The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditi...The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.展开更多
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-...Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.展开更多
To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numeric...To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.展开更多
Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was ...Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.展开更多
Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to...Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to overcome these problems.This study examines the failure characteristics,weakening law,and breakdown mechanism of deep sandstone(depth=1050 m)samples in a microwave field.The macroscopic and microscopic properties were determined via mechanical tests,mesoscopic tests,and numerical simulations.Microwave application at 1000 W for 60 s reduced the uniaxial compressive strength of the sandstone by 50%.Thermal stress of the sandstone was enhanced by uneven expansion of minerals at the microscale.Moreover,the melting of some minerals in the high-temperature environment changed the pore structure,sharply reducing the macroscopic strength.The temperature remained high in the lower midsection of the sample,and the stress was concentrated at the bottom of the sample and along its axis.These results are expected to improve the efficiency of deep rock breaking,provide theoretical and technical support for similar rock-breakage projects,and accelerate advances in deep-Earth science.展开更多
The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction o...The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.展开更多
The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are m...The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates.展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitativel...The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater.展开更多
Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was gen...Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.展开更多
The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulati...The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.展开更多
The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,a...The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,atwo-dimensional depth-averaged numerical model is developed.The model is robust and accurate in reproducing therecirculation flow behind a groyne and turbulent flows in channels with abrupt cross-sectional changes,when com-pared to the available experimental data of mean velocities and turbulence kinetic energy.Our results reveal that theabrupt cross-sectional change of a channel can affect the flow pattern significantly and introduces the complex turbu-lence characteristics.In particular,when the channel has an abrupt expansion,the mean flow pattern is mainly in lon-gitudinal direction with rather small transverse component.Meanwhile,a recirculating region forms behind the expan-sion position and the turbulence has very strong intensity within this region.For the flow in the channel with an ab-rupt contraction,the longitudinal component of the flow is decreased by the obstruction on one side and accelerated onthe other side,whereas the transverse velocity is small.The turbulence is extraordinarily strong in the regions adja-cent to the contraction wall in the narrow channel.In both cases of abrupt cross-sectional changes,the TKE is genera-ted dominantly by the shear of the longitudinal velocities.展开更多
基金Projects(52104143,52109135,52374099)supported by the National Natural Science Foundation of ChinaProject(2025YFHZ0323)supported by the Natural Science Foundation of Sichuan Province,China。
文摘The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs.
基金Projects(52225403,52074112)supported by the National Natural Science Foundation of ChinaProject(2022CFD009)supported by the Hubei Natural Science Foundation Innovation and Development Joint Fund Key Project,China+2 种基金Project(SDGZK2423)supported by the State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,ChinaProject(HJZKYBKT2024111)supported by the Xiangyang Federation of Social Sciences“Hanjiang Think Tank”Project,ChinaProject supported by the Hubei Superior and Distinctive Discipline Group of“New Energy Vehicle and Smart Transportation”,China。
文摘Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters.
基金Project(2017YFC1501100)supported by the National Key R&D Program of ChinaProjects(51809221,51679158)supported by the National Natural Science Foundation of China。
文摘To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns.
基金Project(42177143) supported by the National Natural Science Foundation of ChinaProject(2020JDJQ0011) supported by the Science Foundation for Distinguished Young Scholars of Sichuan Province,China。
文摘Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels.
基金Projects(51822403,51827901)supported by the National Natural Science Foundation of ChinaProject(2018HH0159)supported by the Sichuan International Technological Innovation Cooperation,China。
文摘Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to overcome these problems.This study examines the failure characteristics,weakening law,and breakdown mechanism of deep sandstone(depth=1050 m)samples in a microwave field.The macroscopic and microscopic properties were determined via mechanical tests,mesoscopic tests,and numerical simulations.Microwave application at 1000 W for 60 s reduced the uniaxial compressive strength of the sandstone by 50%.Thermal stress of the sandstone was enhanced by uneven expansion of minerals at the microscale.Moreover,the melting of some minerals in the high-temperature environment changed the pore structure,sharply reducing the macroscopic strength.The temperature remained high in the lower midsection of the sample,and the stress was concentrated at the bottom of the sample and along its axis.These results are expected to improve the efficiency of deep rock breaking,provide theoretical and technical support for similar rock-breakage projects,and accelerate advances in deep-Earth science.
基金Projects(51179111,51279115)supported by the National Natural Science Foundation of ChinaProject(20110181110073)supported by the Doctoral Programs Foundation of Ministry of Education of China
文摘The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process.
基金Projects(11672194,U19A2098)supported by the National Natural Science Foundation of ChinaProject(2018SCU12047)supported by Fundamental Research Funds for the Central Universities,ChinaProject(2018JZ0036)supported by the Project of Science and Technology of Sichuan Province,China。
文摘The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates.
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
基金Projects(51822403,51827901)supported by the National Natural Science Foundation of ChinaProject(2019ZT08G315)supported by the Department of Science and Technology of Guangdong Province,China。
文摘The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater.
基金Projects(51809221,51679158)supported by the National Natural Science Foundation of ChinaProject(KFJJ20-06M)supported by the State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology),China。
文摘Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns.
基金Projects(50820125405, 51004020, 51174039, 4112265) supported by the National Natural Science Foundation of ChinaProject(201104563) supported by the China Postdoctoral Science Foundation+3 种基金Project(2011CB013503) supported by the National Basic Research Program of ChinaProject(51274053) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(200960) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(NECT-09-0258) supported by the New Century Excellent Talents in University of China
文摘The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass.
基金supported,in part,by the National Natural Science Foundation of China(51061130547 and51279120)
文摘The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,atwo-dimensional depth-averaged numerical model is developed.The model is robust and accurate in reproducing therecirculation flow behind a groyne and turbulent flows in channels with abrupt cross-sectional changes,when com-pared to the available experimental data of mean velocities and turbulence kinetic energy.Our results reveal that theabrupt cross-sectional change of a channel can affect the flow pattern significantly and introduces the complex turbu-lence characteristics.In particular,when the channel has an abrupt expansion,the mean flow pattern is mainly in lon-gitudinal direction with rather small transverse component.Meanwhile,a recirculating region forms behind the expan-sion position and the turbulence has very strong intensity within this region.For the flow in the channel with an ab-rupt contraction,the longitudinal component of the flow is decreased by the obstruction on one side and accelerated onthe other side,whereas the transverse velocity is small.The turbulence is extraordinarily strong in the regions adja-cent to the contraction wall in the narrow channel.In both cases of abrupt cross-sectional changes,the TKE is genera-ted dominantly by the shear of the longitudinal velocities.
基金Project(RCJC20210706091948015) supported by the Science Fund for Distinguished Young Scholars in Shenzhen,ChinaProject(U2013603) supported by the National Natural Science Foundation of China。
基金Project(2022NSFSC0193)supported by the Natural Science Foundation of Sichuan Province,ChinaProject(52104143)supported by the National Natural Science Foundation of China+2 种基金Project(GKZD010084)supported by the State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University),ChinaProject(MAETIC202201)supported by the Open Project Program of Shandong Marine Aerospace Equipment Technological Innovation Center,Ludong University,ChinaProject(GJJ2202702)supported by the Key Program of Department of Education of Jiangxi Province,China。