期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Study on the characteristics of crack initiation in deep dense shale containing circular hole under varying stress conditions
1
作者 XIE Hong-qiang FENG Gan +4 位作者 LIU Huai-zhong HE Qiang XIAO Ming-li PEI Jian-liang TAHERDANGKOO Reza 《Journal of Central South University》 2025年第1期244-261,共18页
The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditi... The evolution of cracks in shale directly affects the efficient production of shale gas.However,there is a lack of research on the characteristics of crack initiation in deep dense shale under different stress conditions.In this work,considering the different combinations of confining pressure and bedding plane inclination angle(α),biaxial mechanical loading experiments were conducted on shale containing circular holes.The research results indicate that the confining pressure and inclination angle of the bedding planes significantly influence the failure patterns of shale containing circular holes.The instability of shale containing circular holes can be classified into five types:tensile failure along the bedding planes,tensile failure through the bedding planes,shear slip along the bedding planes,shear failure through the bedding planes,and block instability failure.Furthermore,the evolution of strain and stress fields around the circular holes was found to be the fundamental cause of variations in the initiation characteristics and locations of shale cracks.The crack initiation criterion for shale containing circular hole was established,providing a new method for evaluating the trajectory of shale hole wall fractures.This study holds significant importance for evaluating the evolution and stability of fracture networks within shale reservoirs. 展开更多
关键词 shale gas deep dense shale crack initiate characteristics failure modes
在线阅读 下载PDF
Effect of water on dynamic mechanical properties of coal under different depth stress conditions
2
作者 LI Sheng-wei GAO Ming-zhong +2 位作者 LI Ye-xue WANG Jun ZENG Gang 《Journal of Central South University》 2025年第1期220-228,共9页
Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-... Coal seam water injection in tunnels is an effective technical measure for preventing coal mine rock bursts.This study used the improved split Hopkinson pressure bar(SHPB)to apply three equal static stresses to water-saturated coal to simulate the initial stress environment of coal at different depths.Then,dynamic mechanical experiments were conducted on the saturated coal at different depths to investigate the effects of water saturation and depth on the coal samples’dynamic mechanical properties.Under uniaxial compression and without lateral compression,the strength of coal samples decreased to varying degrees in the saturated state;under different depth conditions,the dynamic strength of coal in the saturated state decreased compared with that in the natural state.However,compared with that at 0 m,the reduction in the strength of coal under the saturated condition at 200,400,600,and 800 m was significantly reduced.The findings of this study provide a basic theoretical foundation for the prevention and control of dynamic coal mine disasters. 展开更多
关键词 COAL mining depths water saturation SHPB dynamic compressive strength
在线阅读 下载PDF
Mechanical response and stability analysis of rock mass in high geostress underground powerhouse caverns subjected to excavation 被引量:20
3
作者 LI Biao DING Quan-fu +4 位作者 XU Nu-wen LEI Yi-fan XU Yuan ZHU Zhong-ping LIU Jing-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期2971-2984,共14页
To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numeric... To investigate the stability of rock mass in high geostress underground powerhouse caverns subjected to excavation,a microseismic(MS)monitoring system was established and the discrete element method(DEM)-based numerical simulation was carried out.The tempo-spatial damage characteristics of rock mass were analyzed.The evolution laws of MS source parameters during the formation of a rock collapse controlled by high geostress and geological structure were investigated.Additionally,a three-dimensional DEM model of the underground powerhouse caverns was built to reveal the deformation characteristics of rock mass.The results indicated that the MS events induced by excavation of high geostress underground powerhouse caverns occurred frequently.The large-stake crown of the main powerhouse was the main damage area.Prior to the rock collapse,the MS event count and accumulated energy release increased rapidly,while the apparent stress sharply increased and then decreased.The amount and proportion of shear and mixed MS events remarkably increased.The maximum displacement was generally located near the spandrel areas.The MS monitoring data and numerical simulation were in good agreement,which can provide significant references for damage evaluation and disaster forecasting in high geostress underground powerhouse caverns. 展开更多
关键词 high geostress underground powerhouse caverns microseismic monitoring discrete element modelling stability analysis
在线阅读 下载PDF
Formation mechanism of rockburst in deep tunnel adjacent to faults:Implication from numerical simulation and microseismic monitoring 被引量:13
4
作者 CHEN Yi-yi XIAO Pei-wei +3 位作者 LI Peng ZHOU Xiang LIANG Zheng-zhao XU Nu-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期4035-4050,共16页
Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was ... Rockbursts were frequently encountered in the construction of deeply buried tunnels at the Jinping-II hydropower station, Southwest China. In those cases, the existence of large structural planes, such as faults, was usually observed near the excavation boundaries. The formation mechanism of the “11·28” rockburst, which was a typical rockburst and occurred in a drainage tunnel under a deep burial depth, high in-situ stress state and complex geological conditions, has been difficult to explain. Realistic failure process analysis(RFPA3D) software was adopted to numerically simulate the whole failure process of the surrounding rock mass around the tunnel subjected to excavation. The spatial distribution of acoustic emission derived from numerical simulation contributed to explaining the mechanical responses of the process. Analyses of the stress, safety reserve coefficient and damage degree were performed to reveal the effect of faults on the formation of rockbursts in the deep tunnel. The existence of faults results in the formation of stress anomaly areas between the tunnel and the fault. The surrounding rock mass failure propagates toward the fault from the initial failure, to different degrees. The relative positions and angles of faults play significant roles in the extent and development of surrounding rock mass failure, respectively. The increase in the lateral stress coefficient leads to the aggravation of the surrounding rock mass damage, especially in the roof and floor of the tunnel. Moreover, as the rock strength-stress ratio increases, the failure mode of the near-fault tunnel gradually changes from the stress-controlled type to the compound-controlled type. These findings were consistent with the microseismic monitoring results and field observations, which was helpful to understand the mechanical behavior of tunnel excavation affected by faults. The achievements of this study can provide some references for analysis of the failure mechanisms of similar deep tunnels. 展开更多
关键词 near-fault tunnel ROCKBURST numerical simulation formation mechanism microseismic monitoring
在线阅读 下载PDF
Exploration of weakening mechanism of uniaxial compressive strength of deep sandstone under microwave irradiation 被引量:13
5
作者 YANG Ben-gao GAO Ming-zhong +6 位作者 XIE Jing LIU Jun-jun WANG Fei WANG Ming-yao WANG Xuan WEN Xiang-yue YANG Zhao-ying 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期611-623,共13页
Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to... Traditional mechanical rock breaking method is labor-intensive and low-efficient,which restrictes the development of deep resources and deep space.As a new rock-breakage technology,microwave irradiation is expected to overcome these problems.This study examines the failure characteristics,weakening law,and breakdown mechanism of deep sandstone(depth=1050 m)samples in a microwave field.The macroscopic and microscopic properties were determined via mechanical tests,mesoscopic tests,and numerical simulations.Microwave application at 1000 W for 60 s reduced the uniaxial compressive strength of the sandstone by 50%.Thermal stress of the sandstone was enhanced by uneven expansion of minerals at the microscale.Moreover,the melting of some minerals in the high-temperature environment changed the pore structure,sharply reducing the macroscopic strength.The temperature remained high in the lower midsection of the sample,and the stress was concentrated at the bottom of the sample and along its axis.These results are expected to improve the efficiency of deep rock breaking,provide theoretical and technical support for similar rock-breakage projects,and accelerate advances in deep-Earth science. 展开更多
关键词 MICROWAVE SANDSTONE uniaxial compressive strength weakening mechanism
在线阅读 下载PDF
Experimental and field study on dissipation coefficient of supersaturated total dissolved gas 被引量:10
6
作者 冯镜洁 李然 +1 位作者 马倩 王乐乐 《Journal of Central South University》 SCIE EI CAS 2014年第5期1995-2003,共9页
The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction o... The elevated supersaturation of total dissolved gas (TDG) downstream of a high-dam spill has deleterious effects on fish in a large range. A one-dimensional (l-D) longitudinal model is optimal for the prediction of supersaturated TDG dissipation over a long distance. The key issue of the model is to determine the dissipation coefficient accurately. In agreement with field observations and experiment data, dimensional analysis and regression were performed to propose a formula for estimating the dissipation coefficient of supersaturated TDG in various rivers and reservoirs, and it involves the effects of the turbulence intensity, the hydro-pressure and the solid-liquid interface. The friction velocity, water depth, hydraulic radius and Froude number are independent variables in the formula which are easy to determine in practical applications. The 1-D longitudinal model is implemented to calculate the dissipation of TDG in a reach of the Jinsha River. Good agreement is found between the calculated results and field data for both the dissipation coefficient and the dissipation process. 展开更多
关键词 total dissolved gas dissipation coefficient longitudinal model HYDRODYNAMICS
在线阅读 下载PDF
Effect of loading rates on crack propagating speed,fracture toughness and energy release rate using single-cleavage trapezoidal open specimen under impact loads 被引量:4
7
作者 LANG Lin ZHU Zhe-ming +3 位作者 WANG Han-bing HUANG Jian-wei WANG Meng ZHANG Xian-shang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2440-2454,共15页
The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are m... The former studies indicate that loading rates significantly affect dynamic behavior of brittle materials,for instance,the dynamic compressive and tensile strength increase with loading rates.However,there still are many unknown or partially unknown aspects.For example,whether loading rates have effect on crack dynamic propagating behavior(propagation toughness,velocity and arrest,etc).To further explore the effect of loading rates on crack dynamic responses,a large-size single-cleavage trapezoidal open(SCTO)specimen was proposed,and impacting tests using the SCTO specimen under drop plate impact were conducted.Crack propagation gauges(CPGs)were employed in measuring impact loads,crack propagation time and velocities.In order to verify the testing result,the corresponding numerical model was established using explicit dynamic software AUTODYN,and the simulation result is basically consistent with the experimental results.The ABAQUS software was used to calculate the dynamic SIFs.The universal function was calculated by fractal method.The experimental-numerical method was employed in determining initiation toughness and propagation toughness.The results indicate that crack propagating velocities,dynamic fracture toughness and energy release rates increase with loading rates;crack delayed initiation time decreases with loading rates. 展开更多
关键词 crack velocity dynamic fracture toughness particle velocity loading rate single-cleavage trapezoidal open(SCTO)specimen
在线阅读 下载PDF
Limit analysis of ultimate uplift capacity and failure mechanism ofshallow plate anchors in multi-layered soils 被引量:1
8
作者 LYU Cheng WANG Zhu-hong +1 位作者 ZENG Zheng-qiang ZHANG Xiao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2049-2061,共13页
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ... Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient. 展开更多
关键词 limit analysis dilatancy coefficient ultimate uplift capacity plate anchors multi-layered soils
在线阅读 下载PDF
Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining 被引量:31
9
作者 GAO Ming-zhong ZHANG Jian-guo +3 位作者 LI Sheng-wei WANG Man WANG Ying-wei CUI Peng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3013-3024,共12页
The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitativel... The split-Hopkinson pressure bar(SHPB)and digital image correlation(DIC)techniques are combined to analyze the dynamic compressive failure process of coal samples,and the box fractal dimension is used to quantitatively analyze the dynamic changes in the coal sample cracks under impact load conditions with different loading rates.The experimental results show that the fractal dimension can quantitatively describe the evolution process of coal fractures under dynamic load.During the dynamic compression process,the evolution of the coal sample cracks presents distinct stages.In the crack propagation stage,the fractal dimension increases rapidly with the progress of loading,and in the crack widening stage,the fractal dimension increases slowly with the progress of loading.The initiation of the crack propagation phase of the coal samples gradually occurs more quickly with increasing loading rate;the initial cracks appear earlier.At the same loading time point,when the loading rate is greater,the fractal dimension of the cracks observed in the coal sample is greater. 展开更多
关键词 fractal dimension loading rate impact load coal crack
在线阅读 下载PDF
Characteristics of microseismic b-value associated with rock mass large deformation in underground powerhouse caverns at different stress levels 被引量:13
10
作者 LI Biao DING Quan-fu +3 位作者 XU Nu-wen DAI Feng XU Yuan QU Hong-lue 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第2期693-711,共19页
Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was gen... Rock mass large deformation in underground powerhouse caverns has been a severe hazard in hydropower engineering in Southwest China.During the development of rock mass large deformation,a sequence of fractures was generated that can be monitored using microseismic(MS)monitoring techniques.Two MS monitoring systems were established in two typical underground powerhouse caverns featuring distinct geostress levels.The MS b-values associated with rock mass large deformation and their temporal variation are analysed.The results showed that the MS bvalue in course of rock mass deformation was less than 1.0 in the underground powerhouse caverns at a high stress level while larger than 1.5 at a low stress level.Prior to the rock mass deformation,the MS b-values derived from both the high-stress and low-stress underground powerhouse caverns show an incremental decrease over 10%within 10 d.The results contribute to understanding the fracturing characteristics of MS sources associated with rock mass large deformation and provide a reference for early warning of rock mass large deformation in underground powerhouse caverns. 展开更多
关键词 underground powerhouse caverns rock mass large deformation stress level microseismic monitoring bvalue
在线阅读 下载PDF
Failure precursor of surrounding rock mass around cross tunnel in high-steep rock slope 被引量:8
11
作者 马克 唐春安 +2 位作者 徐奴文 刘峰 徐敬武 《Journal of Central South University》 SCIE EI CAS 2013年第1期207-217,共11页
The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulati... The stability of the surrounding rock mass around cross tunnel in the right bank slope of Dagangshan hydropower station, in the southwestern China, was analyzed by microseismic monitoring as well as numerical simulations. The realistic failure process analysis code (abbreviated as RFPA3D) was employed to reproduce the initiation, propagation, coalescence and interactions of micro-fractures, the evolution of associated stress fields and acoustic emission (AE) activities during the whole failure processes of the surrounding rock mass around cross tunnel. Combined with microseismic activities by microseismic monitoring on the fight bank slope, the spatial-temporal evolution and the micro-fracture precursor characteristics during the complete process of progressive failure of the surrounding rock mass around cross tunnel were discussed and the energy release law of the surrounding rock mass around the cross tunnel was obtained. The result shows that the precursor characteristic of microfractures occurring in rock mass is an effective approach to early warn catastrophic damage of rock mass around cross tunnel. Moreover, the heterogeneity of rock mass is the source and internal cause of the failure precursor of rock mass. 展开更多
关键词 rock slope cross tunnel microseismic monitoring precursory characteristics HETEROGENEITY
在线阅读 下载PDF
Numerical Studies of Turbulent Flows in Channels with Abrupt Cross-sectional Changes
12
作者 CHEN Hao-liang LIN Quan-hong +1 位作者 Cheong Hin Fatt LIN Peng-zhi 《南水北调与水利科技》 CAS CSCD 北大核心 2013年第1期J0007-J0015,共9页
The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,a... The turbulent flows through the channels with abrupt cross-sectional changes are common and importantphysical process in nature.For a better prediction of the mean flow and turbulent characteristics for this problem,atwo-dimensional depth-averaged numerical model is developed.The model is robust and accurate in reproducing therecirculation flow behind a groyne and turbulent flows in channels with abrupt cross-sectional changes,when com-pared to the available experimental data of mean velocities and turbulence kinetic energy.Our results reveal that theabrupt cross-sectional change of a channel can affect the flow pattern significantly and introduces the complex turbu-lence characteristics.In particular,when the channel has an abrupt expansion,the mean flow pattern is mainly in lon-gitudinal direction with rather small transverse component.Meanwhile,a recirculating region forms behind the expan-sion position and the turbulence has very strong intensity within this region.For the flow in the channel with an ab-rupt contraction,the longitudinal component of the flow is decreased by the obstruction on one side and accelerated onthe other side,whereas the transverse velocity is small.The turbulence is extraordinarily strong in the regions adja-cent to the contraction wall in the narrow channel.In both cases of abrupt cross-sectional changes,the TKE is genera-ted dominantly by the shear of the longitudinal velocities. 展开更多
关键词 TURBULENT flow open channel ABRUPT expansion ABRUPT CONTRACTION SHALLOW water equation
在线阅读 下载PDF
不同微波作用模式下深部巷道砂岩的破坏行为和能量演化特征 被引量:9
13
作者 唐茂颖 高明忠 +4 位作者 李树武 杨本高 唐瑞烽 李飞 刘军军 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第1期214-226,共13页
有效破碎硬岩和预防并控制岩爆灾害是深部高地应力区施工的两个关键问题,也是确保深部工程安全高效施工的两条最重要的途径。本文以微波作用下坚硬砂岩的致裂弱化为出发点,以单次微波辐照处理的持续时间为变量,同时结合力学测试和声发... 有效破碎硬岩和预防并控制岩爆灾害是深部高地应力区施工的两个关键问题,也是确保深部工程安全高效施工的两条最重要的途径。本文以微波作用下坚硬砂岩的致裂弱化为出发点,以单次微波辐照处理的持续时间为变量,同时结合力学测试和声发射监测方法,论证了微波作用对防治岩爆灾害的可能性。结果表明,在微波作用下,坚硬砂岩的裂纹损伤应力占比从77%下降到62%;耗散能占比从6%增加到20%,基于能量的脆性指数从0.94下降到0.72;声发射监测结果表明,经微波作用后,砂岩的平静期从总时间的56.2%和59.6%大幅缩短至11.5%和8.6%。在本试验中,1 kW微波作用时长的阈值为2 min,超过该阈值时,岩石就会受到不可逆损伤。本研究可为深部高地应力区高效、安全破岩提供必要的理论支持和技术指导。 展开更多
关键词 微波 砂岩 声发射 能量 脆-延性转变
在线阅读 下载PDF
基于不同拉伸试验的盐岩拉伸破坏及声发射特征研究 被引量:3
14
作者 刘建锋 王春萍 +2 位作者 王璐 冉莉娜 邓朝福 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第4期1345-1358,共14页
盐岩的抗拉强度是盐穴储气工程中的一个重要参数,由于直接拉伸试验对试验装置和岩石试件的要求较高,导致其测试难度较大,需要探索一种试验简单、测试准确的方法来获得抗拉强度。为此,本文针对盐岩开展了直接拉伸试验、简化ISRM标准巴西... 盐岩的抗拉强度是盐穴储气工程中的一个重要参数,由于直接拉伸试验对试验装置和岩石试件的要求较高,导致其测试难度较大,需要探索一种试验简单、测试准确的方法来获得抗拉强度。为此,本文针对盐岩开展了直接拉伸试验、简化ISRM标准巴西试验、中国标准巴西试验和三点弯曲试验,分析了基于不同试验获得的盐岩抗拉强度及拉伸破坏过程中的声发射(AE)特性。结果表明拉伸试验方法对盐岩抗拉强度以及声发射计数、能量和空间分布特征具有显著影响。对比基于不同试验方法得到的抗拉强度及盐岩拉伸破坏特征发现,三点弯曲试验测定的间接抗拉强度与直接抗拉试验测定的抗拉强度更为接近,因此三点弯曲试验可作为除直接抗拉试验外测定盐岩抗拉强度的较好选择。 展开更多
关键词 盐岩 抗拉强度 声发射 破坏特征
在线阅读 下载PDF
不同含量的固体颗粒对喷嘴内空化流动特殊演化影响的研究 被引量:1
15
作者 韩向东 员康 +4 位作者 于方艳 李超 景建斌 袁瑛琳 冯淦 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第12期4197-4206,共10页
本文研究了不同含量的固体颗粒对喷嘴内空化流动特殊演化的影响。固体颗粒含量从1%变至6%,平均粒径从0.0015 mm增加至0.070 mm。修正适用于清水介质空化流动的Schnerr-Sauer空化模型用于含固体颗粒空化流动的数值模拟。结果表明:含固体... 本文研究了不同含量的固体颗粒对喷嘴内空化流动特殊演化的影响。固体颗粒含量从1%变至6%,平均粒径从0.0015 mm增加至0.070 mm。修正适用于清水介质空化流动的Schnerr-Sauer空化模型用于含固体颗粒空化流动的数值模拟。结果表明:含固体颗粒空化流动的含汽量高于清水介质空化流动下的。不同含量的固体颗粒促进空化流动的演化。随着固体颗粒含量的增加,平均粒径的促进范围逐渐变小。研究含固体颗粒空化流动的流动参数与作用于固体颗粒上的力用于揭示机理。最大滑移速度与最小滑移速度的绝对值均高于清水介质空化流动下的。最大与最小湍动能均高于清水介质空化流动下的。含固体颗粒空化流动的混合动能高于清水介质空化流动下的。它们是降低压力促进空化流动发展的主导影响因素。计算所得的萨夫曼升力的量级是10^(−2),对空化流动的影响相对较弱,是次要影响因素。这些因素共同作用,促进喷嘴内含固体颗粒空化流动的特殊发展。 展开更多
关键词 含固体颗粒空化流动 固体颗粒含量 含汽量 滑移速度 湍动能
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部