The collapse of rock masses in fault-developed zones poses significant safety challenges during the excavation of high-stress underground caverns. This study investigates the spatiotemporal evolution of the collapse m...The collapse of rock masses in fault-developed zones poses significant safety challenges during the excavation of high-stress underground caverns. This study investigates the spatiotemporal evolution of the collapse mechanisms of the cavern in the Yebatan Hydropower Station through using microseismic (MS) monitoring and displacement measurements. We developed a multi-parameter deformation early warning model that integrates three critical indicators: deformation rate, rate increment, and tangential angle of the deformation time curve. The results of the early warning model show a significant and abrupt increase in the deformation of the rock mass during the collapse process. The safety and stability of the local cavern in the face of excavation-induced disturbances are meticulously assessed utilizing MS data. Spatiotemporal analysis of the MS monitoring indicates a high frequency of MS events during the blasting phase, with a notable clustering of these events in the vicinity of the fault. These research results provide a valuable reference for risk warnings and stability assessments in the fault development zones of analogous caverns.展开更多
Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blo...Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blossom piles, it is important to investigate the skin friction behavior of plum blossom pile foundations precluding any straightforward constitutive model. In this work, an analytic method dependent on the cross-sectional geometry and the vertical shearing effects is proposed by means of equilibrium analysis to calculate the effective vertical stress in the surrounding soil, the skin friction/negative skin friction, and the axial force/dragload of a plum blossom pile. Additionally, the curves of skin friction of piles are investigated with the same conditions. The results show that the curves of skin friction of piles deduced according to the developed analytic method agree well with the FEM results and related literature solution, which validates the solution. The axial force of the pile decreases with the increase of the shear action coefficient in the buried depth direction under the vertical concentrated load when considering the vertical shearing effects on the pile-soil interfaces.展开更多
基金Projects(52209132, 52309156) supported by the National Natural Science Foundation of ChinaProject(BK20251905) supported by the Natural Science Foundation of Jiangsu Province,China+2 种基金Project(252102320037) supported by the Henan Province Science and Technology Research,ChinaProject(CKWV20231173/KY) supported by the CRSRI Open Research Program,ChinaProject(2023KSD15) supported by the Open Research Fund of Hubei Provincial Key Laboratory of Construction and Management in Hydropower Engineering,China。
文摘The collapse of rock masses in fault-developed zones poses significant safety challenges during the excavation of high-stress underground caverns. This study investigates the spatiotemporal evolution of the collapse mechanisms of the cavern in the Yebatan Hydropower Station through using microseismic (MS) monitoring and displacement measurements. We developed a multi-parameter deformation early warning model that integrates three critical indicators: deformation rate, rate increment, and tangential angle of the deformation time curve. The results of the early warning model show a significant and abrupt increase in the deformation of the rock mass during the collapse process. The safety and stability of the local cavern in the face of excavation-induced disturbances are meticulously assessed utilizing MS data. Spatiotemporal analysis of the MS monitoring indicates a high frequency of MS events during the blasting phase, with a notable clustering of these events in the vicinity of the fault. These research results provide a valuable reference for risk warnings and stability assessments in the fault development zones of analogous caverns.
基金Project(52325905) supported by the National Natural Science Foundation of ChinaProjects(DJ-HXGG-2023-04, DJHXGG-2023-16) supported by the Key Technology Research Projects of Power China。
文摘Plum blossom pile is a new type of special-shaped pile, which is proposed based on the principle of maximum perimeter with the same cross-sectional area. To advance this technique, primarily for the design of plum blossom piles, it is important to investigate the skin friction behavior of plum blossom pile foundations precluding any straightforward constitutive model. In this work, an analytic method dependent on the cross-sectional geometry and the vertical shearing effects is proposed by means of equilibrium analysis to calculate the effective vertical stress in the surrounding soil, the skin friction/negative skin friction, and the axial force/dragload of a plum blossom pile. Additionally, the curves of skin friction of piles are investigated with the same conditions. The results show that the curves of skin friction of piles deduced according to the developed analytic method agree well with the FEM results and related literature solution, which validates the solution. The axial force of the pile decreases with the increase of the shear action coefficient in the buried depth direction under the vertical concentrated load when considering the vertical shearing effects on the pile-soil interfaces.