The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone betwe...The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.展开更多
To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elas...To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.展开更多
Experimental evidence has indicated that clay exhibits strain-softening response under undrained compression following anisotropic consolidation.The purpose of this work was to propose a modeling method under critical...Experimental evidence has indicated that clay exhibits strain-softening response under undrained compression following anisotropic consolidation.The purpose of this work was to propose a modeling method under critical state theory of soil mechanics.Based on experimental data on different types of clay,a simple double-surface model was developed considering explicitly the location of critical state by incorporating the density state into constitutive equations.The model was then used to simulate undrained triaxial compression tests performed on isotropically and anisotropically consolidated samples with different stress ratios.The predictions were compared with experimental results.All simulations demonstrate that the proposed approach is capable of describing the drained and undrained compression behaviors following isotropic and anisotropic consolidations.展开更多
Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage ...Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.展开更多
An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,e...An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,epoxy,hydroxyl and carboxyl,which can form networks at room temperature and result in an enhanced chemical and water resistance of the consolidated soil.With increasing of TEOS content,the hybrid materials keep colorless with only some reduction of transparency,while the hybrid materials obviously turn from moderate yellowish to brown yellow with the increase of the epoxy resin(EOR) content after 120 min UV irradiation.SEM observation indicates that the hybrid soil consolidation materials can effectively penetrate into the soil substrate,fill up most of the pores,decrease the area porosity and consolidate the Jinsha archaeological soil.The consolidation performances are in the sequence:ESA > K2SiO4(PS) > tetraethyl orthosilicate(TEOS).展开更多
A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it ...A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.展开更多
基金Project(2018YSJS14)supported by the Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring(Central South University),Ministry of Education,China
文摘The Lunggar iron deposit belongs to the Bangong-Nujiang metallogenic belt and is located in central Lhasa on the Tibetan Plateau.In the Lunggar deposit,iron mineralization formed in the skarnization contact zone between the Early Cretaceous granodiorite and the late Permian Xiala Formation limestone.In this study,we achieved detailed zircon U-Pb-Hf isotopes and mineral chemistry for the Early Cretaceous granodiorite.Zircon U-Pb dating results indicate that the Early Cretaceous granodiorite emplaced at ca.119 Ma.Based on the trace elements in zircons and the mineral chemical composition of amphibole and biotite,the Early Cretaceous granodiorite was believed to form under condition of high temperature(>700°C),low pressure(100400 MPa),and relatively high oxygen fugacity(lgfO2)(13.6 to 13.9)and H2O content(4%8%).Zircon trace elements,Hf isotope and biotite chemistry collectively reveal that significant juvenile mantle-derived magmas contributed to the source of the granodiorite.The relatively high logfO2 and shallow magma chamber are beneficial for skarn iron mineralization,implying remarkable potential for further prospecting in the Lunggar iron deposit.
基金Project(LY13E080021) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(2011A610072) supported by the Ningbo Municipal Natural Science Foundation,ChinaProject(XKL14D2063) supported by Subject Program of Ningbo University,China
文摘To investigate the mechanical properties of cement mortar in sodium sulfate and sodium chloride solutions, uniaxial compression test and ultrasonic test were performed. Test results show that the relative dynamic elastic modulus, the mass variation,and the compressive strength of cement mortar increase first, and then decrease with increasing erosion time in sodium sulfate and sodium chloride solutions. The relative dynamic elastic moduli and the compressive strengths of cement mortars with water/cement ratios of 0.55 and 0.65 in sodium sulfate solution are lower than those in sodium chloride solution with the same concentration at the420 th day of immersion. The compressive strength of cement mortar with water/cement ratio of 0.65 is more sensitive to strain rate than that with water/cement ratio of 0.55. In addition, the strain-rate sensitivity of compressive strength of cement mortar will increase under attacks of sodium sulfate or sodium chloride solution.
基金Project(SKLGP2011K013)supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,ChinaProject(20110073120012)supported by the Research Fund for the Doctoral Program of Higher Education of China+1 种基金Project(11PJ1405700)supported by the the Shanghai Pujiang Talent Plan,ChinaProject(41002091)supported by the National Natural Science Foundation of China
文摘Experimental evidence has indicated that clay exhibits strain-softening response under undrained compression following anisotropic consolidation.The purpose of this work was to propose a modeling method under critical state theory of soil mechanics.Based on experimental data on different types of clay,a simple double-surface model was developed considering explicitly the location of critical state by incorporating the density state into constitutive equations.The model was then used to simulate undrained triaxial compression tests performed on isotropically and anisotropically consolidated samples with different stress ratios.The predictions were compared with experimental results.All simulations demonstrate that the proposed approach is capable of describing the drained and undrained compression behaviors following isotropic and anisotropic consolidations.
基金Projects(51374112/E0409,51109084/E090701) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY112) supported by the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(SKLGP2013K014) supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology),ChinaProject(SKLGDUEK1304) supported by the Open Research Fund of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,China
文摘Seepage and stress redistribution are the main factors affecting the stability of surrounding rock in high-pressure hydraulic tunnels.In this work,the effects of the seepage field were firstly simplified as a seepage factor acting on the stress field,and the equilibrium equation of high pressure inner water exosmosis was established based on physical theory.Then,the plane strain theory was used to solve the problem of elasticity,and the analytic expression of surrounding rock stress was obtained.On the basis of criterion of Norway,the influences of seepage,pore water pressure and buried depth on the characteristics of the stress distribution of surrounding rocks were studied.The analyses show that the first water-filling plays a decisive role in the stability of the surrounding rock; the influence of seepage on the stress field around the tunnel is the greatest,and the change of the seepage factor is approximately consistent with the logarithm divergence.With the effects of the rock pore water pressure,the circumferential stress shows the exchange between large and small,but the radial stress does not.Increasing the buried depth can enhance the arching effect of the surrounding rock,thus improving the stability.
基金Project(2004BA810B02)supported by the 10th Five Years Key Programs for Science and Technology Development of China
文摘An organic-inorganic epoxy-silica-acrylate(ESA) hybrid material was used for the consolidation of Jinsha archaeological site of Chengdu in China.The hybrid materials have multiple functional groups,such as anhydride,epoxy,hydroxyl and carboxyl,which can form networks at room temperature and result in an enhanced chemical and water resistance of the consolidated soil.With increasing of TEOS content,the hybrid materials keep colorless with only some reduction of transparency,while the hybrid materials obviously turn from moderate yellowish to brown yellow with the increase of the epoxy resin(EOR) content after 120 min UV irradiation.SEM observation indicates that the hybrid soil consolidation materials can effectively penetrate into the soil substrate,fill up most of the pores,decrease the area porosity and consolidate the Jinsha archaeological soil.The consolidation performances are in the sequence:ESA > K2SiO4(PS) > tetraethyl orthosilicate(TEOS).
基金Projects(42077185,U22A20591)supported by the National Natural Science Foundation of China+5 种基金Projects(2022JDJQ0010,2022ZYD0040)supported by the Sichuan Science and Technology Program for Distinguished Young Scholars,ChinaProject(2020YFC1808300)supported by the National Key Research and Development Program of ChinaProject(SKLGP2020Z002)supported by the Research Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,China。
基金Projects(SKLGP2012K024,SKLGP2013K012)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Ceoenvironment Protection,ChinaProject(2011BAK12B03)supported by the National Technology Project,ChinaProject(41401004)supported by the National Natural Science Foundation of China
文摘A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.