Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
This study investigates tribological performance of MoS2 coating on slipper pair in axial piston pump.Firstly,the MoS2 coating on the surface of slipper pair was prepared by atmospheric plasma spraying treatment techn...This study investigates tribological performance of MoS2 coating on slipper pair in axial piston pump.Firstly,the MoS2 coating on the surface of slipper pair was prepared by atmospheric plasma spraying treatment technology.Secondly,the tribological characteristics of slipper pair under various working conditions were evaluated on ring-on-block tester in oil lubrication.The original and worn surfaces of the specimens were analyzed with scanning electron microscope and energy dispersive spectrometer,and then the wear morphologies of the MoS2 coatings were imaged by X-ray photoelectron spectroscopy.The experimental results showed that the friction coefficients of Cu-based materials with MoS2 coating decreased by about 0.05 at 800 N.Especially,when the external load was set to 800 N,the wear rate of the ZY331608 decreased by about 16.4%after the substrates were treated by the MoS2 coating,which exhibited excellent anti-friction and wear resistance.The formation of the MoS2 lubricating film could be classified into four stages,including the initial friction stage,anchoring stage of MoS2 on friction surface,covering stage of the sliding surface by MoS2 and the formation stage of MoS2 film.The dominating wear mechanisms of Cu-based materials with MoS2 coating were adhesive wear and abrasive wear accompanied with oxidative wear.展开更多
The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the...The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.展开更多
In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order ...In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.展开更多
In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopt...In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.展开更多
In the field of model-based system assessment,mathematical models are used to interpret the system behaviors.However,the industrial systems in this intelligent era will be more manageable.Various management operations...In the field of model-based system assessment,mathematical models are used to interpret the system behaviors.However,the industrial systems in this intelligent era will be more manageable.Various management operations will be dynamically set,and the system will be no longer static as it is initially designed.Thus,the static model generated by the traditional model-based safety assessment(MBSA)approach cannot be used to accurately assess the dependability.There mainly exists three problems.Complex:huge and complex behaviors make the modeling to be trivial manual;Dynamic:though there are thousands of states and transitions,the previous model must be resubmitted to assess whenever new management arrives;Unreusable:as for different systems,the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same.Motivated by solving the above problems,this research studies a formal management specifying approach with the advantages of agility modeling,dynamic modeling,and specification design that can be re-suable.Finally,three typical managements are specified in a series-parallel system as a demonstration to show the potential.展开更多
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.
基金Project(51805376)supported by the National Natural Science Foundation of ChinaProject(LQ17E050003)supported by the Zhejiang Provincial Natural Science Foundation of China+1 种基金Project(GZKF-201719)supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,ChinaProject(G20180019)supported by the Basic Scientific Research Projects Foundation of Wenzhou,China。
文摘This study investigates tribological performance of MoS2 coating on slipper pair in axial piston pump.Firstly,the MoS2 coating on the surface of slipper pair was prepared by atmospheric plasma spraying treatment technology.Secondly,the tribological characteristics of slipper pair under various working conditions were evaluated on ring-on-block tester in oil lubrication.The original and worn surfaces of the specimens were analyzed with scanning electron microscope and energy dispersive spectrometer,and then the wear morphologies of the MoS2 coatings were imaged by X-ray photoelectron spectroscopy.The experimental results showed that the friction coefficients of Cu-based materials with MoS2 coating decreased by about 0.05 at 800 N.Especially,when the external load was set to 800 N,the wear rate of the ZY331608 decreased by about 16.4%after the substrates were treated by the MoS2 coating,which exhibited excellent anti-friction and wear resistance.The formation of the MoS2 lubricating film could be classified into four stages,including the initial friction stage,anchoring stage of MoS2 on friction surface,covering stage of the sliding surface by MoS2 and the formation stage of MoS2 film.The dominating wear mechanisms of Cu-based materials with MoS2 coating were adhesive wear and abrasive wear accompanied with oxidative wear.
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.
基金Projects(51975376,51505289)supported by the National Natural Science Foundation of ChinaProject(19ZR1435400)supported by the Natural Science Foundation of Shanghai,China。
文摘In order to improve the force tracking performance of hydraulic quadruped robots in uncertain and unstructured environments,an impedance-based adaptive reference trajectory generation scheme is used.Secondly,in order to improve the robustness to environmental changes and reduce the contact force errors caused by trajectory tracking errors,the backstepping sliding mode controller is combined with the adaptive reference trajectory generator.Finally,a virtual damping control based on velocity and pressure feedback is proposed to solve the problem of contact force disappearance and stall caused by sudden environmental change.The simulation results show that the proposed scheme has higher contact force tracking accuracy when the environment is unchanged;the contact force error can always be guaranteed within an acceptable range when the environment is reasonably changed;when the environment suddenly changes,the drive unit can move slowly until the robot re-contacts the environment.
基金Project(51705243)supported by National Natural Science Foundation of ChinaProject(NS2020052)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GZKF-201915)supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,China。
文摘In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.
基金the National Natural Science Foundation of China(52105070,U21B2074)Department of Science and Technology of Liaoning Province China(2033JH1/10400007).
文摘In the field of model-based system assessment,mathematical models are used to interpret the system behaviors.However,the industrial systems in this intelligent era will be more manageable.Various management operations will be dynamically set,and the system will be no longer static as it is initially designed.Thus,the static model generated by the traditional model-based safety assessment(MBSA)approach cannot be used to accurately assess the dependability.There mainly exists three problems.Complex:huge and complex behaviors make the modeling to be trivial manual;Dynamic:though there are thousands of states and transitions,the previous model must be resubmitted to assess whenever new management arrives;Unreusable:as for different systems,the model must be resubmitted by reconsidering both the management and the system itself at the same time though the management is the same.Motivated by solving the above problems,this research studies a formal management specifying approach with the advantages of agility modeling,dynamic modeling,and specification design that can be re-suable.Finally,three typical managements are specified in a series-parallel system as a demonstration to show the potential.