Forest fire accidents caused by distribution line faults occur frequently,resulting in heavy impacts on people’s safety and social and economic development.Currently,there are few risk assessments for forest fires in...Forest fire accidents caused by distribution line faults occur frequently,resulting in heavy impacts on people’s safety and social and economic development.Currently,there are few risk assessments for forest fires induced by over-head distribution lines,and existing assessment methods may have difficulties in data acquisition.On this basis,a novel as-sessment framework based on an analytic hierarchy process,a Bayesian network and a Fussel-Vesely importance metric is proposed in this paper.The framework combines field research and historical operation and maintenance data to assess the regional-scale risk of forest fires induced by overhead distribution lines to derive the probability of forest fires and to identify high-risk lines and key hazard events in the assessment region.Finally,taking the southern Anhui region as an ex-ample,the annual fire probability of forest fires induced by overhead distribution lines in the southern Anhui region is 5.88%,and rectification measures are proposed.This study provides management with a complete assessment framework that optimizes the difficulty of data collection and allows for additional targeted corrective measures to be proposed for the entire region and route on the basis of the assessment results.展开更多
Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typica...Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.展开更多
Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,...Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,extreme events such as strong explosion,concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m^(2) level,creating a unique threat to materials.This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods,under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m^(2) for 10 s.The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified.Two ignition modes were found at the critical radiant flux of 0.4 MW/m^(2),namely hot-gas spontaneous ignition and hot-residue piloted ignition.The latter is not the focus of this paper due to its extremely small probability of occurrence.The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition,lower ignition energy density,along with a corresponding rise in the critical mass flux and surface temperature at ignition moment.The simulation results are generally aligned with the experimental findings,despite some divergences may be attributed to model simplifications and parameter assumptions.The work contributes to a deeper insight into material behavior under extreme radiation,with valuable implications for fire safety and hazard assessment.展开更多
A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in th...A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.展开更多
In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteris...In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated.Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity.The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure.The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives.Compared with the traditional emulsion explosives,the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6%at 1.0 m and 10.2%at 1.2 m,the maximum values of shock impulse increase by 5.7%at 1.0 m and 19.4%at 1.2 m.The stored hydrogen has dual effects of sensitizers and energetic additives,which can improve the energy output of emulsion explosives.展开更多
The N-GAS model for predicting smoke toxicity has been proposed for many years by NIST.However,almost all the existing CFD software cannot accurately predict the toxicity of smoke using the model because of the absenc...The N-GAS model for predicting smoke toxicity has been proposed for many years by NIST.However,almost all the existing CFD software cannot accurately predict the toxicity of smoke using the model because of the absence of the toxic gas concentration of HCN,NO x,HCl and HBr.In this work,an approach for predicting fire smoke toxicity was developed and demonstrated.A detailed mechanism including these fire effluents was constructed firstly,and the subsequent generation of state relationship among fire effluents,mixture fraction and strain rate was conducted by using opposed-flow flame technique.A mixture fraction-based combustion model used in FDS code was modified,and meanwhile the scalar dissipation rate transport equation was numerically solved.Thus the concentration of fire effluents as the function of mixture fraction and scalar dissipation rate can be calculated through a look-up table,and the toxic potency based on the 7-gas model can be obtained.The method was applied into an underground commercial street in Chongqing.It showed that the results between the 7-gas model and 3-gas model(CO,CO 2,and O 2) were obviously different.It indicated that there needs some modifications in conclusions and results from 3-gas model for fire-risk assessments.展开更多
基金This work was supported by the National Key Research and Development Program of China(2022YFC3003101)the Fundamental Research Funds for the Central Universities(WK2320000050)the Science and Technology Program of State Grid Anhui Electric Power Co.,Ltd.(521205220001).
文摘Forest fire accidents caused by distribution line faults occur frequently,resulting in heavy impacts on people’s safety and social and economic development.Currently,there are few risk assessments for forest fires induced by over-head distribution lines,and existing assessment methods may have difficulties in data acquisition.On this basis,a novel as-sessment framework based on an analytic hierarchy process,a Bayesian network and a Fussel-Vesely importance metric is proposed in this paper.The framework combines field research and historical operation and maintenance data to assess the regional-scale risk of forest fires induced by overhead distribution lines to derive the probability of forest fires and to identify high-risk lines and key hazard events in the assessment region.Finally,taking the southern Anhui region as an ex-ample,the annual fire probability of forest fires induced by overhead distribution lines in the southern Anhui region is 5.88%,and rectification measures are proposed.This study provides management with a complete assessment framework that optimizes the difficulty of data collection and allows for additional targeted corrective measures to be proposed for the entire region and route on the basis of the assessment results.
基金Project(50706059) supported by the National Natural Science Foundation of ChinaProject(HZ2009-KF05) supported by Open Fund of State Key Laboratory of Fire Science of University of Science and Technology in ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Experimental research was conducted to study the structural behaviors of a steel roof truss model without fire-proof coating under pool fire conditions. The data of temperature distribution and displacements of typical members were obtained. It is found that the temperature distribution of environment inside the structure, which is found to be in accordance with the multi-zone model with height, has a decisive effect on the tempera^tre evolution of steel members. Besides, it can also be observed that due to the restriction and coordination among the truss members in the localized fire, the maximum relative deflection, which occurs at the mid-span of the top chord, is relatively slight and has not exceeded 1 mm under experimental conditions. On the other hand, the column experiences a notable thermal expansion during the test. Then, a finite element model is presented and validated by the test results.
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023008)the National Natural Science Foundation of China(Grant No.NSFC 12372342)for financial support of this work.
文摘Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,extreme events such as strong explosion,concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m^(2) level,creating a unique threat to materials.This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods,under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m^(2) for 10 s.The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified.Two ignition modes were found at the critical radiant flux of 0.4 MW/m^(2),namely hot-gas spontaneous ignition and hot-residue piloted ignition.The latter is not the focus of this paper due to its extremely small probability of occurrence.The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition,lower ignition energy density,along with a corresponding rise in the critical mass flux and surface temperature at ignition moment.The simulation results are generally aligned with the experimental findings,despite some divergences may be attributed to model simplifications and parameter assumptions.The work contributes to a deeper insight into material behavior under extreme radiation,with valuable implications for fire safety and hazard assessment.
基金financially supported by the National Natural Science Foundation of China under Project No.51874267 and No.12272374the Fundamental Research Funds for the Central Universities under Project Nos.WK2480000008,WK2480000007,and WK2320000049。
文摘A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.
基金financially supported by the National Natural Science Foundation of China under Project NO. 51874267 and NO. 51674229
文摘In this study,hydrogen-storage glass microballoons were introduced into emulsion explosives to improve the detonation performance of the explosives.The effect of hydrogen-storage pressure on the detonation characteristics of emulsion explosives was systematically investigated.Detonation velocity experiments shows that the change of sensitizing gas and the increase of hydrogen pressure have different effects on the detonation velocity.The experimental parameters of underwater explosion increase first and then decreases with the increase of hydrogen pressure.The decrease of these parameters indicates that the strength of glass microballoons is the limiting factor to improve the detonation performance of hydrogen-storage emulsion explosives.Compared with the traditional emulsion explosives,the maximum peak pressure of shock wave of hydrogen-storage emulsion explosives increases by 10.6%at 1.0 m and 10.2%at 1.2 m,the maximum values of shock impulse increase by 5.7%at 1.0 m and 19.4%at 1.2 m.The stored hydrogen has dual effects of sensitizers and energetic additives,which can improve the energy output of emulsion explosives.
基金sponsored by National Natural Science Foundation of China(No.50676091,No.50876097)Program for New Century Excellent Talents in University of China(NCET-06-0546)
文摘The N-GAS model for predicting smoke toxicity has been proposed for many years by NIST.However,almost all the existing CFD software cannot accurately predict the toxicity of smoke using the model because of the absence of the toxic gas concentration of HCN,NO x,HCl and HBr.In this work,an approach for predicting fire smoke toxicity was developed and demonstrated.A detailed mechanism including these fire effluents was constructed firstly,and the subsequent generation of state relationship among fire effluents,mixture fraction and strain rate was conducted by using opposed-flow flame technique.A mixture fraction-based combustion model used in FDS code was modified,and meanwhile the scalar dissipation rate transport equation was numerically solved.Thus the concentration of fire effluents as the function of mixture fraction and scalar dissipation rate can be calculated through a look-up table,and the toxic potency based on the 7-gas model can be obtained.The method was applied into an underground commercial street in Chongqing.It showed that the results between the 7-gas model and 3-gas model(CO,CO 2,and O 2) were obviously different.It indicated that there needs some modifications in conclusions and results from 3-gas model for fire-risk assessments.
基金This work was supported in part by the National High Technology Research and Development Program of China (863 Program) (2014A A06A503), the National Natural Science Foundation of China (61422 307, 61473269, 61673361, 61673350), the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars and Ministry of Education of China, the Youth Innovation Promotion Asso- ciation, Chinese Academy of Sciences, the Youth Top-notch Talent Support Program, the 1000-talent Youth Program, and the Youth Yangtze River Scholarship.