High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the ...Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the viscosity of the melted pitch and the poor mechanical properties of pitch fibers,it is difficult to reduce the fiber diameter when using continuous spinning.We used the Mathworks Matlab software to optimize the mesophase pitch melt spinning model and to simulate the effects of spinning temperature,mass flow rate,winder speed,and quenching air temperature near the spinneret on the maximum shear rate during drawing.Simulation results demonstrate that applying gradient cooling to the melt upon exiting the spinneret significantly reduces the maximum shear rate and extends the drawing zone,thereby promoting the spinning stability and helping reduce the fiber diameter.In the experiment,instead of quenching in air,we applied gradient cooling to the melt,whose temperature decreased according to the equation Ta=298+278exp(−11.4z),where Ta is the final air temperature in Kelvin,and z is the distance from the spinneret in meters.It was found the gradient cooling greatly improved the draw-down ratio,reducing the average diameter of the pitch fibers from 20.8 to 13.1μm,along with improved process stability.The experimental results are in excellent agreement with the predictions.At the same time,the tensile strength of the 1150°C carbonized fibers increased from 0.6 to 1.1 GPa.Although the degree of orientation of the fibers decreased slightly,the tight bonding between microcrystals,the suppression of splitting,and the smaller diameter improved the mechanical properties of carbon fibers.This study provides an effective method for reducing the fiber diameter while improving continuity.展开更多
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
文摘Mesophase pitch carbon fibers have an ultra-high modulus and thermal conductivity that are unmatched by other carbon fibers,making it irreplaceable in many fields.However,due to the high temperature dependence of the viscosity of the melted pitch and the poor mechanical properties of pitch fibers,it is difficult to reduce the fiber diameter when using continuous spinning.We used the Mathworks Matlab software to optimize the mesophase pitch melt spinning model and to simulate the effects of spinning temperature,mass flow rate,winder speed,and quenching air temperature near the spinneret on the maximum shear rate during drawing.Simulation results demonstrate that applying gradient cooling to the melt upon exiting the spinneret significantly reduces the maximum shear rate and extends the drawing zone,thereby promoting the spinning stability and helping reduce the fiber diameter.In the experiment,instead of quenching in air,we applied gradient cooling to the melt,whose temperature decreased according to the equation Ta=298+278exp(−11.4z),where Ta is the final air temperature in Kelvin,and z is the distance from the spinneret in meters.It was found the gradient cooling greatly improved the draw-down ratio,reducing the average diameter of the pitch fibers from 20.8 to 13.1μm,along with improved process stability.The experimental results are in excellent agreement with the predictions.At the same time,the tensile strength of the 1150°C carbonized fibers increased from 0.6 to 1.1 GPa.Although the degree of orientation of the fibers decreased slightly,the tight bonding between microcrystals,the suppression of splitting,and the smaller diameter improved the mechanical properties of carbon fibers.This study provides an effective method for reducing the fiber diameter while improving continuity.