Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microsco...Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.展开更多
The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement....The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.展开更多
基金Project(21376271)supported by the National Natural Science Foundation of ChinaProject(2013)supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,China+2 种基金Projects(CL12129,201310533008)supported by the Undergraduates Innovative Training Foundation of Central South University,ChinaProject(Z12060)supported by the Undergraduate Free Exploration Innovation Foundation of Central South University,ChinaProject(CSUZC2013008)supported by the Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69~. It is found that CuCI/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N′″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuC1/HMTETA due to higher activity and better reversibility of the former system.
基金Project(51801235) supported by the National Natural Science Foundation of ChinaProjects(2018RS3019, 2019JJ30033) supported by the Natural Science Foundation of Hunan Province, China+1 种基金Project(2018CX004) supported by the Innovation-Driven Project of Central South University, ChinaProject(502045005) supported by the Start-up Funding of Central South University, China。
基金Projects(51671152,51304153)supported by the National Natural Science Foundation of China
文摘The high-temperature acoustic absorption performance of porous titanium fiber material was investigated in terms of sample thickness, porosity, temperature, air-cavity thickness and double-layer structure arrangement. The effects on absorption coefficient were systematically assessed. The results show that the sound absorption performance is improved by increasing the sample porosity and/or thickness, and/or increasing the air-cavity thickness. Meanwhile, increasing the temperature gives better acoustic absorption performance in the low frequency range but also lowers the performance in the high frequency range, while double-layer structure enables better acoustic absorption performance.