We report high transition temperature superconductivity in one unit-cell(UC)thick FeSe films grown on a Seetched SrTiO_(3)(001)substrate by molecular beam epitaxy(MBE).A superconducting gap as large as 20 meV and the ...We report high transition temperature superconductivity in one unit-cell(UC)thick FeSe films grown on a Seetched SrTiO_(3)(001)substrate by molecular beam epitaxy(MBE).A superconducting gap as large as 20 meV and the magnetic field induced vortex state revealed by in situ scanning tunneling microscopy(STM)suggest that the superconductivity of the 1 UC FeSe films could occur around 77K.The control transport measurement shows that the onset superconductivity temperature is well above 50K.Our work not only demonstrates a powerful way for finding new superconductors and for raising Tc,but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.展开更多
We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and u...We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.展开更多
We prepared one-unit-ceil (1-UC) thick FeSe films on insulating SrTiOa substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measu...We prepared one-unit-ceil (1-UC) thick FeSe films on insulating SrTiOa substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset Tc above 40 K and an extremely large critical current density fie Jc-1.7× 106 A/cm2 at 2K, which are much higher than Tc-8K and Jc-104 A/cm^2 for bulk FeSe, respectively. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10721404 and 11134008the National Basic Research Program of China under Grant No 2009CB929400.
文摘We report high transition temperature superconductivity in one unit-cell(UC)thick FeSe films grown on a Seetched SrTiO_(3)(001)substrate by molecular beam epitaxy(MBE).A superconducting gap as large as 20 meV and the magnetic field induced vortex state revealed by in situ scanning tunneling microscopy(STM)suggest that the superconductivity of the 1 UC FeSe films could occur around 77K.The control transport measurement shows that the onset superconductivity temperature is well above 50K.Our work not only demonstrates a powerful way for finding new superconductors and for raising Tc,but also provides a well-defined platform for systematic studies of the mechanism of unconventional superconductivity by using different superconducting materials and substrates.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11190022,11334010 and 11534007the National Basic Research Program of China under Grant No 2015CB921000the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020300
文摘We report comprehensive angle-resolved photoemission investigations on the electronic structures and nematicity of the parent compounds of the iron-based superconductors including CeFeAsO, BaFe2As2, NaFeAs, FeSe and undoped FeSe/SrTiO3 films with 1, 2 and 20 layers. While the electronic structure near tile Brillouin zone center F varies dramatically among different materials, the electronic structure near the Brillouin zone corners (M points), as well as their temperature dependence, are rather similar. The electronic structure near the zone corners is dominated by the electronic nematicity that gives rise to a band splitting of the dxz and dyz bands below the nematie transition temperature. A clear relation is observed between the band splitting magnitude arid the onset temperature of nematicity. Our results may shed light on the origin of nematicity, its effect on the electronic structures, and its relation with superconductivity in the iron-based superconductors.
基金Supported by the National Basic Research Program of China under Grant Nos 2013CB934600 and 2012CB921300, and the National Natural Science Foundation of China under Grant Nos 91121004, 11321091 and 11374336.
文摘We prepared one-unit-ceil (1-UC) thick FeSe films on insulating SrTiOa substrates with non-superconducting FeTe protection layers by molecular beam epitaxy for ex situ studies. By direct transport and magnetic measurements, we provide definitive evidence for high temperature superconductivity in the 1-UC FeSe films with an onset Tc above 40 K and an extremely large critical current density fie Jc-1.7× 106 A/cm2 at 2K, which are much higher than Tc-8K and Jc-104 A/cm^2 for bulk FeSe, respectively. Our work may pave the way to enhancing and tailoring superconductivity by interface engineering.