The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a...The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a design scheme for a fast charging station for electric vehicles equipped with distributed photovoltaic power generation system taking the area with certain conditions in Beijing as an example construction site. The technical indexes and equipment lectotype covering the general framework and subsystems of the charging station are determined by analyzing the charging service demand of fast charging stations. In this study, the layout of the station is developed and the operation benefits of the station is analyzed. The design scheme realizes the design objective of "rationalization, modularization and intelligentization" of the fast charging station and can be used as reference for the construction of a fast charging network in urban area.展开更多
Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispat...Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.展开更多
This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fadi...This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fading Kalman filter(AFKF)is designed for estimating the state of the smart grid.The AFKF can completely filter out the Gaussian noise of the power system,and obtain a more accurate state change curve(including consideration of the attack).A Euclidean distance ratio detection algorithm based on the AFKF is proposed for detecting D-LAAs.Amplifying imperceptible D-LAAs through the new Euclidean distance ratio improves the D-LAA detection sensitivity,especially for very weak D-LAA attacks.Finally,the feasibility and effectiveness of the Euclidean distance ratio detection algorithm are verified based on simulations.展开更多
Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covere...Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covered with dielectric film is proposed and implemented through a bench-scale setup.Compared with the bare conductor,the corona discharge suppression effect of the dielectric-film-covered conductor under positive polarity is studied from the composite field strength and ion current density using a line-plate experimental device.The influences of film thickness and film material on the corona discharge suppression effect are investigated.The charge accumulation and dissipation characteristics of different film materials are also studied.The results show that the conductor covered with dielectric film has excellent ability to inhibit corona discharge.The ground-level composite field strength of the conductor covered with dielectric film is lower than its nominal field strength,and its ion current density is at the nA m^(−2) level.The corona threshold voltage can be promoted by increasing the film thickness,but the ability to inhibit corona discharge becomes weak.The larger the surface electric field strength,the more charge accumulated,but the faster the charge dissipation rate.Compared with polyvinyl chloride film,cross-linked polyethylene film has stronger charge accumulation ability and slower charge dissipation rate,which can better restrain the corona discharge of HVDC transmission lines.展开更多
The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD stud...The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.展开更多
Achieving a balance between accuracy and efficiency in target detection applications is an important research topic.To detect abnormal targets on power transmission lines at the power edge,this paper proposes an effec...Achieving a balance between accuracy and efficiency in target detection applications is an important research topic.To detect abnormal targets on power transmission lines at the power edge,this paper proposes an effective method for reducing the data bit width of the network for floating-point quantization.By performing exponent prealignment and mantissa shifting operations,this method avoids the frequent alignment operations of standard floating-point data,thereby further reducing the exponent and mantissa bit width input into the training process.This enables training low-data-bit width models with low hardware-resource consumption while maintaining accuracy.Experimental tests were conducted on a dataset of real-world images of abnormal targets on transmission lines.The results indicate that while maintaining accuracy at a basic level,the proposed method can significantly reduce the data bit width compared with single-precision data.This suggests that the proposed method has a marked ability to enhance the real-time detection of abnormal targets in transmission circuits.Furthermore,a qualitative analysis indicated that the proposed quantization method is particularly suitable for hardware architectures that integrate storage and computation and exhibit good transferability.展开更多
In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mod...In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.展开更多
Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are no...Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine(PNAG),which is one of the important components in some biofilms, was used as the research subject,and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.展开更多
In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for th...In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.展开更多
Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpret...Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpretable,and have limited training data.To address these limitations,this paper proposes an automatic infrared image recognition framework,which includes an object recognition module based on a deep self-attention network and a temperature distribution identification module based on a multi-factor similarity calculation.First,the features of an input image are extracted and embedded using a multi-head attention encoding-decoding mechanism.Thereafter,the embedded features are used to predict the equipment component category and location.In the located area,preliminary segmentation is performed.Finally,similar areas are gradually merged,and the temperature distribution of the equipment is obtained to identify a fault.Our experiments indicate that the proposed method demonstrates significantly improved accuracy compared with other related methods and,hence,provides a good reference for the automation of power equipment inspection.展开更多
Uncertainty must be well addressed in transmission expansion planning(TEP)problem,and it significantly affects the reliability and cost-effectiveness of power systems.Owing to the complex operating environment of powe...Uncertainty must be well addressed in transmission expansion planning(TEP)problem,and it significantly affects the reliability and cost-effectiveness of power systems.Owing to the complex operating environment of power systems,it is crucial to consider different types of uncertainties during the planning stage.In this paper,a robust TEP model is proposed by considering multiple uncertainties and active load.Specifically,in this model,the uncertainties of wind power output and contingency probability are considered simultaneously.The uncertainties are described by scenario and interval,and the Benders decomposition technique is applied to solve the model.The feasibility and effectiveness of the proposed model are illustrated using the IEEE RTS and IEEE 118-node systems.展开更多
Power system equipment outages are one of the most important factors affecting the reliability and economy of power systems.It is crucial to consider the reliability of the planning problems.In this paper,a generation...Power system equipment outages are one of the most important factors affecting the reliability and economy of power systems.It is crucial to consider the reliability of the planning problems.In this paper,a generation expansion planning(GEP)model is proposed,in which the candidate generating units and energy storage systems(ESSs)are simultaneously planned by minimizing the cost incurred on investment,operation,reserve,and reliability.The reliability cost is computed by multiplying the value of lost load(VOLL)with the expected energy not supplied(EENS),and this model makes a compromise between economy and reliability.Because the computation of EENS makes the major computation impediment of the entire model,a new efficient linear EENS formulation is proposed and applied in a multi-step GEP model.By doing so,the computation efficiency is significantly improved,and the solution accuracy is still desirable.The proposed GEP model is illustrated using the IEEE-RTS system to validate the effectiveness and superiority of the new model.展开更多
Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation betwe...Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided.展开更多
Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona disch...Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and con- tinuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agree- ment with experimental measurements. The behavior of the electronic avalanche progress is Mso described. 0+ and N+ are the dominant positive ions, and the values of 0- and 02 densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.展开更多
At present,spark plugs are used to trigger discharge in pulsed plasma thrusters(PPT),which are known to be life-limiting components due to plasma corrosion and carbon deposition.A strong electric field could be form...At present,spark plugs are used to trigger discharge in pulsed plasma thrusters(PPT),which are known to be life-limiting components due to plasma corrosion and carbon deposition.A strong electric field could be formed in a cathode triple junction(CTJ) to achieve a trigger function under vacuum conditions.We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle.The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes,contributing to a reduction in the electrode breakdown voltage.Additionally,it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments.The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases,and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity.The induction-triggered coaxial PPT we propose has a simplified trigger structure,and it is an effective attempt to optimize the micro-satellite thruster.展开更多
The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Ti...The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.展开更多
基金supported by National Key Research and Development Program of China–Comprehensive Demonstration Project of Smart Grid Supporting Lowcarbon Winter Olympics(No.2016YFB0900500)
文摘The demand for fast charging is increasing owing to the rapid expansion of the market for electric vehicles. In addition, the power generation technology for distributed photovoltaic has matured. This paper presents a design scheme for a fast charging station for electric vehicles equipped with distributed photovoltaic power generation system taking the area with certain conditions in Beijing as an example construction site. The technical indexes and equipment lectotype covering the general framework and subsystems of the charging station are determined by analyzing the charging service demand of fast charging stations. In this study, the layout of the station is developed and the operation benefits of the station is analyzed. The design scheme realizes the design objective of "rationalization, modularization and intelligentization" of the fast charging station and can be used as reference for the construction of a fast charging network in urban area.
基金State Grid Corporation Science and Technology Project(520605190010).
文摘Owing to the rapid development of microgrids(MGs)and growing applications of renewable energy resources,multiobjective optimal dispatch of MGs need to be studied in detail.In this study,a multiobjective optimal dispatch model is developed for a standalone MG composed of wind turbines,photovoltaics,diesel engine unit,load,and battery energy storage system.The economic cost,environmental concerns,and power supply consistency are expressed via subobjectives with varying priorities.Then,the analytic hierarchy process algorithm is employed to reasonably specify the weight coefficients of the subobjectives.The quantum particle swarm optimization algorithm is thereafter employed as a solution to achieve optimal dispatch of the MG.Finally,the validity of the proposed model and solution methodology are con firmed by case studies.This study provides refere nee for mathematical model of multiojective optimizati on of MG and can be widely used in current research field.
基金the Science and Technology Project of the State Grid Shandong Electric Power Company:Research on the vulnerability and prevention of the electrical cyber-physical monitoring system based on interdependent networksthe National Natural Science Foundation of China(61873057)and the Education Department of Jilin Province(JJKH20200118KJ).
文摘This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fading Kalman filter(AFKF)is designed for estimating the state of the smart grid.The AFKF can completely filter out the Gaussian noise of the power system,and obtain a more accurate state change curve(including consideration of the attack).A Euclidean distance ratio detection algorithm based on the AFKF is proposed for detecting D-LAAs.Amplifying imperceptible D-LAAs through the new Euclidean distance ratio improves the D-LAA detection sensitivity,especially for very weak D-LAA attacks.Finally,the feasibility and effectiveness of the Euclidean distance ratio detection algorithm are verified based on simulations.
基金by State Grid Shandong Electric Power Company(52062618001M)。
文摘Corona discharge suppression for high-voltage direct-current(HVDC)transmission lines at line terminals such as converter stations is a subject that requires attention.In this paper,a method based on a conductor covered with dielectric film is proposed and implemented through a bench-scale setup.Compared with the bare conductor,the corona discharge suppression effect of the dielectric-film-covered conductor under positive polarity is studied from the composite field strength and ion current density using a line-plate experimental device.The influences of film thickness and film material on the corona discharge suppression effect are investigated.The charge accumulation and dissipation characteristics of different film materials are also studied.The results show that the conductor covered with dielectric film has excellent ability to inhibit corona discharge.The ground-level composite field strength of the conductor covered with dielectric film is lower than its nominal field strength,and its ion current density is at the nA m^(−2) level.The corona threshold voltage can be promoted by increasing the film thickness,but the ability to inhibit corona discharge becomes weak.The larger the surface electric field strength,the more charge accumulated,but the faster the charge dissipation rate.Compared with polyvinyl chloride film,cross-linked polyethylene film has stronger charge accumulation ability and slower charge dissipation rate,which can better restrain the corona discharge of HVDC transmission lines.
基金supported by the International Thermonuclear Experimental Reactor Special Fund of China (Grant Nos. 2013GB106001 and 2013GB106003)
文摘The electron cyclotron resonance heating (ECRH) system with a 60 GHz/200 kW/0.5 s gyrotron donated by the Culham Science Center is being developed on the J-TEXT tokamak for plasma heating, current drive and MHD studies. Simultaneously, an anode power supply (APS) has been rebuilt and tested for the output power control of the gyrotron, of which the input voltage is derived from an 80 kV negative cathode power supply. The control strategy by controlling the grid voltage of the tetrode TH5186 is applied to obtain an accurate anode climbing voltage, of which the output voltage can be obtained from 0-30 kV with respect to the cathode power supply. The characteristics of the APS, including control, protection, modulation, and output waveform, were tested with a 100 kV/60 A negative cathode power supply, a dummy load and the ECRH control system. results indicate that the APS can meet the requirements of the ECRH system on J-TEXT.
基金supported by State Grid Corporation Basic Foresight Project(5700-202255308A-2-0-QZ).
文摘Achieving a balance between accuracy and efficiency in target detection applications is an important research topic.To detect abnormal targets on power transmission lines at the power edge,this paper proposes an effective method for reducing the data bit width of the network for floating-point quantization.By performing exponent prealignment and mantissa shifting operations,this method avoids the frequent alignment operations of standard floating-point data,thereby further reducing the exponent and mantissa bit width input into the training process.This enables training low-data-bit width models with low hardware-resource consumption while maintaining accuracy.Experimental tests were conducted on a dataset of real-world images of abnormal targets on transmission lines.The results indicate that while maintaining accuracy at a basic level,the proposed method can significantly reduce the data bit width compared with single-precision data.This suggests that the proposed method has a marked ability to enhance the real-time detection of abnormal targets in transmission circuits.Furthermore,a qualitative analysis indicated that the proposed quantization method is particularly suitable for hardware architectures that integrate storage and computation and exhibit good transferability.
基金Project supported by the National Natural Science Foundation of China(Grant No.61601196).
文摘In a two-frequency cavity driving and atom driving atom-cavity system,we find the photon blockade effect.In a truncated eigenstates space,we calculate the zero-delay second-order correlation function of the cavity mode analytically and obtain an optimal condition for the photon blockade.By including three transition pathways,we find that higher excitations of the cavity mode can be further suppressed and the zero-delay second-order correlation function can be reduced additionally.Based on the master equation,we simulate the system evolution and find that the analytical solutions match well with the numerical results.Our scheme is robust with small fluctuations of parameters and may be used as a new type of single photon source.
基金supported by National Natural Science Foundation of China(Grant No.11675095)the Fundamental Research Funds of Shandong University(Grant No.2017JC017)。
文摘Cold atmospheric plasma shows a satisfactory ability to inactivate bacterial biofilms that are difficult to remove using conventional methods in some cases. However, the researches on the inactivation mechanism are not quite sufficient. Poly-β-1–6-N-acetylglucosamine(PNAG),which is one of the important components in some biofilms, was used as the research subject,and the related mechanism of action triggered by different concentrations of the OH in plasma was studied using reactive molecular dynamics simulations. The results showed that OH radicals could not only trigger the hydrogen abstraction reaction leading to cleavage of the PNAG molecular structure, but undergo an OH addition reaction with PNAG molecules. New reaction pathways appeared in the simulations as the OH concentration increased, but the reaction efficiency first increased and then decreased. The simulation study in this paper could, to some extent, help elucidate the microscopic mechanism of the interaction between OH radicals in plasma and bacterial biofilms at the atomic level.
基金supported by the Science and Technology Project of State Grid Shandong Electric Power Company?“Research on the Data-Driven Method for Energy Internet”?(Project No.2018A-100)。
文摘In order to promote the development of the Internet of Things(IoT),there has been an increase in the coverage of the customer electric information acquisition system(CEIAS).The traditional fault location method for the distribution network only considers the information reported by the Feeder Terminal Unit(FTU)and the fault tolerance rate is low when the information is omitted or misreported.Therefore,this study considers the influence of the distributed generations(DGs)for the distribution network.This takes the CEIAS as a redundant information source and solves the model by applying a binary particle swarm optimization algorithm(BPSO).The improved Dempster/S-hafer evidence theory(D-S evidence theory)is used for evidence fusion to achieve the fault section location for the distribution network.An example is provided to verify that the proposed method can achieve single or multiple fault locations with a higher fault tolerance.
基金This work was supported by National Key R&D Program of China(2019YFE0102900).
文摘Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpretable,and have limited training data.To address these limitations,this paper proposes an automatic infrared image recognition framework,which includes an object recognition module based on a deep self-attention network and a temperature distribution identification module based on a multi-factor similarity calculation.First,the features of an input image are extracted and embedded using a multi-head attention encoding-decoding mechanism.Thereafter,the embedded features are used to predict the equipment component category and location.In the located area,preliminary segmentation is performed.Finally,similar areas are gradually merged,and the temperature distribution of the equipment is obtained to identify a fault.Our experiments indicate that the proposed method demonstrates significantly improved accuracy compared with other related methods and,hence,provides a good reference for the automation of power equipment inspection.
基金supported by a project of the State Grid Shandong Electric Power Company(52062520000Q)the National Key Research and Development Program of China(2019YFE0118400).
文摘Uncertainty must be well addressed in transmission expansion planning(TEP)problem,and it significantly affects the reliability and cost-effectiveness of power systems.Owing to the complex operating environment of power systems,it is crucial to consider different types of uncertainties during the planning stage.In this paper,a robust TEP model is proposed by considering multiple uncertainties and active load.Specifically,in this model,the uncertainties of wind power output and contingency probability are considered simultaneously.The uncertainties are described by scenario and interval,and the Benders decomposition technique is applied to solve the model.The feasibility and effectiveness of the proposed model are illustrated using the IEEE RTS and IEEE 118-node systems.
基金supported by project of State Grid Shandong Electric Power Company(52062520000Q)the National Key Research and Development Program of China(2019YFE0118400)。
文摘Power system equipment outages are one of the most important factors affecting the reliability and economy of power systems.It is crucial to consider the reliability of the planning problems.In this paper,a generation expansion planning(GEP)model is proposed,in which the candidate generating units and energy storage systems(ESSs)are simultaneously planned by minimizing the cost incurred on investment,operation,reserve,and reliability.The reliability cost is computed by multiplying the value of lost load(VOLL)with the expected energy not supplied(EENS),and this model makes a compromise between economy and reliability.Because the computation of EENS makes the major computation impediment of the entire model,a new efficient linear EENS formulation is proposed and applied in a multi-step GEP model.By doing so,the computation efficiency is significantly improved,and the solution accuracy is still desirable.The proposed GEP model is illustrated using the IEEE-RTS system to validate the effectiveness and superiority of the new model.
基金supported by the Scientific and Technological Research and Development Program of China Railway Corporation under Grant N2018G023by the Science and Technology Projects of Sichuan Province under Grants 2018RZ0075
文摘Fault frequency of catenary is related to meteo-rological conditions. In this work, based on the historical data, catenary fault frequency and weather-related fault rate are introduced to analyse the correlation between catenary faults and meteorological conditions, and further the effect of meteorological conditions on catenary oper-ation. Moreover, machine learning is used for catenary fault prediction. As with the single decision tree, only a small number of training samples can be classified cor-rectly by each weak classifier, the AdaBoost algorithm is adopted to adjust the weights of misclassified samples and weak classifiers, and train multiple weak classifiers. Finally, the weak classifiers are combined to construct a strong classifier, with which the final prediction result is obtained. In order to validate the prediction method, an example is provided based on the historical data from a railway bureau of China. The result shows that the mapping relation between meteorological conditions and catenary faults can be established accurately by AdaBoost algorithm. The AdaBoost algorithm can accurately predict a catenary fault if the meteorological conditions are provided.
基金supported by the Major State Basic Research Development Program of China(973 Program)(No.2011CB20941)Scientific Research Foundation of State Key Lab. of Power Transmission Equipment and System Security of China(No.2007DA10512709102)+1 种基金National Natural Science Foundation of China(No.51007096)the Fundamental Research Funds for the Central Universities of China(No.CDJZR10150001)
文摘Investigating the corona mechanism plays a key role in enhancing the performance of electrical insulation systems. Numerical simulation offers a better understanding of the physical characteristics of air corona discharges. Using a two-dimensional axisymmetrical kinetics model, into which the photoionization effect is incorporated, the DC air corona discharge at atmosphere pressure is studied. The plasma model is based on a self-consistent, multi-component, and con- tinuum description of the air discharge, which is comprised of 12 species and 22 reactions. The discharge voltage-current characteristic predicted by the model is found to be in quite good agree- ment with experimental measurements. The behavior of the electronic avalanche progress is Mso described. 0+ and N+ are the dominant positive ions, and the values of 0- and 02 densities are much smaller than that of the electron. The electron and positive ion have a low-density thin layer near the anode, which is a result of the surface reaction and absorption effect of the electrode. As time progresses, the electric field increases and extends along the cathode surface, whereas the cathode fall shrinks after the corona discharge hits the cathode; thus, in the cathode sheath, the electron temperature increases and the position of its peak approaches to the cathode. The present computational model contributes to the understanding of this physical mechanism, and suggests ways to improve the electrical insulation system.
基金National Natural Science Foundation of China(No.51577011)the Graduate Innovation Project of Beijing Jiaotong University(No.2016YJS147) for the financial support of this work
文摘At present,spark plugs are used to trigger discharge in pulsed plasma thrusters(PPT),which are known to be life-limiting components due to plasma corrosion and carbon deposition.A strong electric field could be formed in a cathode triple junction(CTJ) to achieve a trigger function under vacuum conditions.We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle.The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes,contributing to a reduction in the electrode breakdown voltage.Additionally,it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments.The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases,and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity.The induction-triggered coaxial PPT we propose has a simplified trigger structure,and it is an effective attempt to optimize the micro-satellite thruster.
基金supported by Science and Technology Project of State Grid Corporation Headquarters under Grant 5108-202218280A-2-170-XG(Development and Application of Power Time-Sensitive Network Switching Chip。
文摘The progress of modern industry has given rise to great requirements for network transmission latency and reliability in domains such as smart grid and intelligent driving.To address these challenges,the concept of Time-sensitive networking(TSN)is proposed by IEEE 802.1TSN working group.In order to achieve low latency,Cyclic queuing and forwarding(CQF)mechanism is introduced to schedule Timetriggered(TT)flows.In this paper,we construct a TSN model based on CQF and formulate the flow scheduling problem as an optimization problem aimed at maximizing the success rate of flow scheduling.The problem is tackled by a novel algorithm that makes full use of the characteristics and the relationship between the flows.Firstly,by K-means algorithm,the flows are initially partitioned into subsets based on their correlations.Subsequently,the flows within each subset are sorted by a new special criteria extracted from multiple features of flow.Finally,a flow offset selecting method based on load balance is used for resource mapping,so as to complete the process of flow scheduling.Experimental results demonstrate that the proposed algorithm exhibits significant advantages in terms of scheduling success rate and time efficiency.