期刊文献+
共找到450篇文章
< 1 2 23 >
每页显示 20 50 100
Overview of the physics design of the EHL-2 spherical torus
1
作者 Yunfeng LIANG Huasheng XIE +24 位作者 Yuejiang SHI Xiang GU Xinchen JIANG Lili DONG Xueyun WANG Danke YANG Wenjun LIU Tiantian SUN Yumin WANG Zhi LI Jianqing CAI Xianming SONG Muzhi TAN Guang YANG Hanyue ZHAO Jiaqi DONG Yueng-Kay Martin PENG Shaodong SONG Zhengyuan CHEN Yingying LI Bing LIU Di LUO Yuanming YANG Minsheng LIU the EHL-2 Teama 《Plasma Science and Technology》 2025年第2期4-23,共20页
ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p-^(11)B fusion,establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperat... ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p-^(11)B fusion,establish spherical torus/tokamak experimental scaling laws at 10’s keV ion temperature,and provide a design basis for subsequent experiments to test and realize the p-^(11)B fusion burning plasma.Based on 0-dimensional(0-D)system design and 1.5-dimensional transport modelling analyses,the main target parameters of EHL-2 have been basically determined,including the plasma major radius,R0,of 1.05 m,the aspect ratio,A,of 1.85,the maximum central toroidal magnetic field strength,B0,of 3 T,and the plasma toroidal current,Ip,of 3 MA.The main heating system will be the neutral beam injection at a total power of 17 MW.In addition,6 MW of electron cyclotron resonance heating will serve as the main means of local current drive and MHD instabilities control.The physics design of EHL-2 is focused on addressing three main operating scenarios,i.e.,(1)high ion temperature scenario,(2)high-performance steady-state scenario and(3)high triple product scenario.Each scenario will integrate solutions to different important issues,including equilibrium configuration,heating and current drive,confinement and transport,MHD instability,p-^(11)B fusion reaction,plasma-wall interactions,etc.Beyond that,there are several unique and significant challenges to address,including●establish a plasma with extremely high core ion temperature(T_(i,0)>30 keV),and ensure a large ion-to-electron tempera-ture ratio(T_(i,0)/Te,0>2),and a boron concentration of 10%‒15%at the plasma core;●realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current.This is because the volt-seconds that the central solenoid of the ST can provide are very limited;●achieve divertor heat and particle fluxes control including complete detachment under high P/R(>20 MW/m)at rela-tively low electron densities.This overview will introduce the advanced progress in the physics design of EHL-2. 展开更多
关键词 spherical torus proton-boron fusion thermal reaction rate alpha particles(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Physics design of current drive and strategy of heating system for EHL-2 spherical torus
2
作者 Xinchen JIANG Yuejiang SHI +29 位作者 Shaodong SONG Wenjun LIU Guang YANG Xianming SONG Xueyun WANG Xiang GU Gang YIN Danke YANG Hanyue ZHAO Yumin WANG Huasheng XIE Pengmin LI Hanqing WANG Keqing ZHANG Lei HAN Xiaohe WU Chengyue LIU Bin WU Chengyi SONG Chunyan LI Jiakang CHEN Pingwei ZHENG Debabrata BANERJEE Qingwei YANG Jiaqi DONG Yunfeng LIANG Baoshan YUAN Yueng-Kay Martin PENG Xianmei ZHANG the EHL-2 Team 《Plasma Science and Technology》 2025年第2期129-142,共14页
ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the b... ENN He Long-2(EHL-2)is the next-generation large mega-Ampere(MA)spherical torus(ST)proposed and funded by the ENN company.The design parameters are:Ti0>30 keV,n_(e0)~1×10^(20)m^(-3),Ip~3 MA,Bt~3 T.One of the biggest challenges of EHL-2 is how to achieve several MA current flat-tops with limited voltage-seconds(Vs)of the center solenoid(CS)coils.In order to minimize the consumption of Vs,a fully non-inductive start-up by electron cyclotron resonance heating(ECRH)will be applied in EHL-2.The ramp-up phase will be accomplished with the synergetic mode between the CS and non-inductive methods.The strategy of non-inductive start-up and ramp-up with synergetic mode has been verified on EXL-50U’s experiments.Based on this strategy,numerical simulations indicate the feasibility of EHL-2 achieving 3 MA plasma current.A high-performance steady-state scenario with Ip~1.5 MA is also designed.In this scenario,the bootstrap current fraction fBS>70%,the safety factor q at the magnetic axis q0>2,the minimum safety factor qmin>1,the poloidal betaβp>3 and normalized betaβN>2.3.Each design iteration integrates the validation of physical models with the constraints of engineering implementation,gradually optimizing the performance of the heating and current drive(H&CD)systems.Numerical simulation results for general auxiliary H&CD systems such as neutral beam injection(NBI),electron cyclotron(EC)wave,ion cyclotron wave(ICW),and lower hybrid wave(LHW)are presented.These simulation results ensure that the 31 MW H&CD systems comprehensively cover all scenarios while maintaining engineering feasibility. 展开更多
关键词 spherical torus EHL-2 SCENARIO heating and current drive
在线阅读 下载PDF
Experimental investigation on high heat flux plasma parameters of HIT-PSI device in argon discharges
3
作者 Tao HUANG Qiuyue NIE +7 位作者 Cheng CHEN Lin NIE Wei ZHAO Tao JIANG Yang LIU Xu ZHAO Feng LI Xiaogang WANG 《Plasma Science and Technology》 2025年第1期118-127,共10页
Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must m... Researches on plasma-facing materials/components(PFMs/PFCs)have become a focus in magnetic confinement fusion studies,particularly for advanced tokamak operation scenarios.Similarly,spacecraft surface materials must maintain stable performance under relatively high temperatures and other harsh plasma conditions,making studies of their thermal and ablation resistance critical.Recently,a low-cost,low-energy-storage for superconducting magnets,and compact linear device,HIT-PSI,has been designed and constructed at Harbin Institute of Technology(HIT)to investigate the interaction between stable high heat flux plasma and PFMs/PFCs in scrape-off-layer(SOL)and divertor regions,as well as spacecraft surface materials.The parameters of the argon plasma beam of HIT-PSI are diagnosed using a water-cooled planar Langmuir probe and emission spectroscopy.As magnetic field rises to 2 T,the argon plasma beam generated by a cascaded arc source achieves high density exceeding 1.2×10^(21)m^(-3)at a distance of 25 cm from the source with electron temperature surpassing 4 eV,where the particle flux reaches 10^(24)m^(-2)s^(-1),and the heat flux loaded on the graphite target measured by infrared camera reaches 4 MW/m^(2).Combined with probe and emission spectroscopy data,the transport characteristics of the argon plasma beam are analyzed. 展开更多
关键词 linear plasma device plasma-material interaction high heat flux high particle flux
在线阅读 下载PDF
Evaluation of thermal and beam-thermal p-^(11)B fusion reactions in the EHL-2 spherical torus
4
作者 Zhi LI Tiantian SUN +26 位作者 Bing LIU Feng WANG Xiangfeng WU Y-K Martin PENG Xiao XIAO Guanchao ZHAO Lianliang MA Yingying LI Zhanhong LIN Haozhe KONG Yunfeng LIANG Huasheng XIE Jiaqi DONG Yuejiang SHI Di LUO Xinchen JIANG Yumin WANG Xiang GU Xueyun WANG Muzhi TAN Hairong HUANG Danke YANG Jianqing CAI Lili DONG Quanyun WANG Minsheng LIU the EHL-2 Team 《Plasma Science and Technology》 2025年第2期45-53,共9页
This paper presents the first comprehensive simulation study of p-11B fusion reactions in a spherical torus.We developed relevant program modules for fusion reactions based on energetic particle simulation frameworks ... This paper presents the first comprehensive simulation study of p-11B fusion reactions in a spherical torus.We developed relevant program modules for fusion reactions based on energetic particle simulation frameworks and analyzed the two main fusion channels:thermal and beam-thermal.Using EHL-2 design parameters with n_(boron)=007n_(ion)and a hydrogen beam at 200 keV and 1 MW,our simulation indicates that p-11B reactions produce approximately 1.5×10^(15)αparticles per second(~0.7 kW)from the thermal channel,and5.3×10^(14)(~0.25 kW)from the beam-thermal channel.We conducted parameter scans to establish a solid physics foundation for the high ion temperature conditions(T_(i)>26ke V)designed for EHL-2.This work also laid the groundwork for studying various operation modes to explore different reaction channels.The simulation results suggest that the conditions in EHL-2 could be sufficient for investigating p-11B thermonuclear reactions.In addition,we found that EHL-2 offered good confinement for energetic particles,allowing us to research the interactions between these ions and plasmas.This research enhances our understanding of burning plasma physics. 展开更多
关键词 EHL-2 spherical torus p-^(11)B fusion energetic particle αparticle(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Preliminary considerations and challenges of proton-boron fusion energy extraction on the EHL-2 spherical torus
5
作者 Huasheng XIE Xiang GU +8 位作者 Yumin WANG Quanyun WANG Feng WANG Haozhe KONG Jiaqi DONG Yunfeng LIANG Yueng-Kay Martin PENG Minsheng LIU the EHL-2 Team 《Plasma Science and Technology》 2025年第2期110-119,共10页
EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which i... EHL-2 spherical torus(ST)is one of the key steps of p-^(11)B(proton-boron or hydrogen-boron)fusion energy research in ENN.The fusion produced energy is carried mainly by alpha particles of average energy 3 MeV,which ideally can be converted to electricity with high efficiency(>80%).However,there exist serious difficulties to realize such conversion in a fusion device,due to the high energy density and high voltage required.To comprehensively describe the progress of the EHL-2 physics design,this work presents preliminary considerations of approaches for achieving energy conversion,highlighting critical issues for further investigation.Specifically,we provide an initial simulation of alpha particle extraction in the EHL-2 ST configuration as a starting point for p-^(11)B fusion energy conversion. 展开更多
关键词 charged particle energy conversion EHL-2 spherical torus proton-boron fusion
在线阅读 下载PDF
Poloidal field system and advanced divertor equilibrium configuration design of the EHL-2 spherical torus
6
作者 Xiang GU Gang YIN +13 位作者 Yuejiang SHI Lili DONG Yu WANG Hong ZANG Yuanming YANG Huasheng XIE Jiaqi DONG Yueng-Kay Martin PENG Baoshan YUAN Qingwei YANG Yunfeng LIANG Xianming SONG Minsheng LIU the EHL-2 Team 《Plasma Science and Technology》 2025年第2期120-128,共9页
The EHL-2(ENN He-Long 2)spherical torus(ST)project focuses on advancing spherical torus technology to address the unique challenges of p-^(11)B fusion,which demands significantly higher ion temperature and heat flux t... The EHL-2(ENN He-Long 2)spherical torus(ST)project focuses on advancing spherical torus technology to address the unique challenges of p-^(11)B fusion,which demands significantly higher ion temperature and heat flux to the divertor plate compared to traditional deuterium-tritium fusion.With a major radius of 1.05 m and a plasma current of 3 MA,the project aims to evaluate and optimize advanced divertor configurations,specifically the Super-X and X-point target(XPT)divertors.The design incorporates an up-down double-null configuration featuring a conventional inner divertor and an XPT outer divertor to effectively reduce the heat flux.The poloidal field(PF)coil system is meticulously optimized to balance engineering constraints with the flexibility in equilibrium configurations.This design is expected to provide a reference equilibrium configuration for other physics design issues and offer critical insight into heat load management. 展开更多
关键词 PF system EQUILIBRIUM X-point target divertor
在线阅读 下载PDF
Strategy and experimental progress of the EXL-50U spherical torus in support of the EHL-2 project
7
作者 Yuejiang SHI Xianming SONG +40 位作者 Dong GUO Xinchen JIANG Xiang GU Lili DONG Xueyun WANG Tiantian SUN Muzhi TAN Zhengyuan CHEN Guang YANG Danke YANG Huasheng XIE Hanyue ZHAO Yong LIU Renyi TAO Jia LI Songjian LI Fan GAO Yihang ZHAO Yupeng ZHANG Cong ZHANG Hongda HE Enwu YANG Yuanming YANG Yu WANG Shaodong SONG Lei HAN Bo XING Pengmin LI Zhenxing WANG Peihai ZHOU Wenwu LUO Yumin WANG Bing LIU Chao WU Xin ZHAO Yunfeng LIANG Jiaqi DONG Baoshan YUAN Y-K Martin PENG Minsheng LIU the EXL-50U Team 《Plasma Science and Technology》 2025年第2期34-44,共11页
The EXL-50U is China’s first large spherical torus device with a toroidal field reaching 1 T.The major radius of the EXL-50U ranges from 0.6 m to 0.8 m,with an aspect ratio of 1.4−1.8.The goal of plasma current in th... The EXL-50U is China’s first large spherical torus device with a toroidal field reaching 1 T.The major radius of the EXL-50U ranges from 0.6 m to 0.8 m,with an aspect ratio of 1.4−1.8.The goal of plasma current in the first experimental phase is 500 kA,and in the future second phase,the goal of plasma current is 1 MA.On the EXL-50U project,the ENN fusion team expeditiously accomplished a series of comprehensive tasks including physical and engineering design,main component construction installation,and system commissioning,all within a mere eighteen-month timeframe.In the experiments of 2024,the EXL-50U achieved a 500 kA limiter configuration discharge using ECRH(Electron Cyclotron Resonance Heating)for non-inductive current start-up and a current ramp-up with the synergetic effect of ECRH and central solenoid(CS).Preliminary divertor configuration plasmas were also obtained under 200 kA plasma current.The core ion temperature of 1 keV was achieved with low-power NBI heating,and the energy confinement time of 30 ms was reached with Ohmic heating in the flat-top phase.The current and future experiments of EXL-50U will strongly support the physical design and operational scenarios of EHL-2 in the areas of current drive,high ion temperature exploration,energy transport and confinement,and hydrogen-boron physical characteristics.At the same time,the experience in the design,construction,and commissioning of the engineering,heating,and diagnostics systems on EXL-50U is also very beneficial for enhancing the feasibility of the engineering design for EHL-2. 展开更多
关键词 EXL-50U EHL-2 spherical torus
在线阅读 下载PDF
Transport analysis of the EHL-2 spherical torus in a high-ion-temperature scenario
8
作者 Xueyun WANG Wenjun LIU +12 位作者 Danke YANG Guang YANG Muzhi TAN Xinchen JIANG Huasheng XIE Yuejiang SHI Hanyue ZHAO Yumin WANG Yunfeng LIANG Jiaqi DONG Bin WU Chengyue LIU the EHL-2 Team 《Plasma Science and Technology》 2025年第2期75-86,共12页
EHL-2 is an ENN second-generation device aimed at studying proton-boron(p-11B)fusion reactions in a spherical torus.The design parameters are Ti0~30 keV,Ti/Te>2,n_(e0)~1×10^(20)m^(-3),I_(p)~3 MA,B_(t)~3 T,and... EHL-2 is an ENN second-generation device aimed at studying proton-boron(p-11B)fusion reactions in a spherical torus.The design parameters are Ti0~30 keV,Ti/Te>2,n_(e0)~1×10^(20)m^(-3),I_(p)~3 MA,B_(t)~3 T,andτ_(E)~0.5 s.High ion temperature is one of the standard operation scenarios of EHL-2,aiming to reduce bremsstrahlung radiation while enhancing plasma parameters by elevating the ion to electron temperature ratio.In order to achieve high ion temperature,neutral beam injection is considered the primary heating method during the flat-top phase.The neutral beam system for EHL-2 comprises 3-5 beams with energy/power ranging from 60 keV/4 MW,80-100 keV/10 MW,to 200 keV/3 MW.This work conducts predictive analysis on core transport during the flat-top phase of EHL-2’s high-ion-temperature scenario utilizing ASTRA.The study delineates the potential operating range of core temperature and other parameters given the designed heating capacity.Specifically,the study presents predictive simulations based on CDBM,GLF23,Bohm-gyro-Bohm,and IFSPPPL transport models,evaluating the steady-state power balance,energy confinement time,and impact of various parameters such as plasma density and NBI power on core ion temperature.The simulations demonstrate that the design parameters of the EHL-2 high-Ti scenario,although sensitive to varying transport models,are hopefully attainable as long as adequate ion heating and controlled ion transport levels are ensured. 展开更多
关键词 TRANSPORT ASTRA hot-ion mode spherical torus
在线阅读 下载PDF
Predictions of gyrokinetic turbulent transport in proton-boron plasmas on EHL-2 spherical torus
9
作者 Muzhi TAN Jianqiang XU +10 位作者 Huarong DU Jiaqi DONG Huasheng XIE Xueyun WANG Xianli HUANG Yumin WANG Xiang GU Bing LIU Yuejiang SHI Yunfeng LIANG the EHL-2 Team 《Plasma Science and Technology》 2025年第2期87-96,共10页
The EHL-2 spherical torus at ENN is the next-generation experimental platform under conceptual design,aiming at realizing proton-boron(p-^(11)B)thermonuclear fusion,which is an attractive pathway towards neutron-free ... The EHL-2 spherical torus at ENN is the next-generation experimental platform under conceptual design,aiming at realizing proton-boron(p-^(11)B)thermonuclear fusion,which is an attractive pathway towards neutron-free fusion.To achieve high-performance steady-state plasma,it is extremely necessary to study the turbulence transport characteristics with high boron content in the plasma core.This study investigates the transport properties in the core internal transport barrier(ITB)region of p-^(11)B plasma utilizing the gyrokinetic code GENE in view of the high ion temperature scenario of EHL-2,specifically focusing on the impact of boron fractions and plasmaβon the microinstabilities and corresponding transport features.Numerical findings indicate that the inclusion of boron species effectively suppresses the trapped electron modes(TEMs)as well as promoting a transition from electromagnetic to electrostatic turbulence with increased boron fraction,which is a result of the suppression of microinstabilities by effective charge and mass.Moreover,it has been identified that the external E×B rotational shear has a notable inhibitory influence on transport,which can reduce the transport level by two to three orders of magnitude,especially at medium boron content.The suppressive effect of E×B on turbulence is weakened once the kinetic ballooning mode(KBM)is excited and the transport shows a rapid increase withβtogether with a reduction in zonal flow amplitude,which is consistent with previous findings.Therefore,it is strongly suggested that exploring advanced strategies for mitigating turbulent transport at highβregimes is necessary for the active control of plasma behavior regarding p-^(11)B plasma-based fusion devices such as EHL-2. 展开更多
关键词 turbulence GYROKINETIC boron fraction(Some figures may appear in colour only in the online journal)
在线阅读 下载PDF
Instabilities of ideal magnetohydrodynamics mode and neoclassical tearing mode stabilization by electron cyclotron current drive for EHL-2 spherical torus
10
作者 Lili DONG Li LI +6 位作者 Wenjun LIU Tong LIU Yunfeng LIANG Jiaqi DONG Huasheng XIE Yuejiang SHI the EHL-2 Team 《Plasma Science and Technology》 2025年第2期64-74,共11页
The next generation fusion device listed on ENN’s fusion roadmap,named as(ENN He-Long)EHL-2,is under both physics and engineering designs.The instabilities of ideal magnetohydrodynamics(MHD)mode and neoclassical tear... The next generation fusion device listed on ENN’s fusion roadmap,named as(ENN He-Long)EHL-2,is under both physics and engineering designs.The instabilities of ideal magnetohydrodynamics(MHD)mode and neoclassical tearing mode(NTM)stabilized by electron cyclotron current drive(ECCD)for EHL-2’s two typical operation scenarios are analyzed.For high-ion-temperature operating(HITO)scenario,the vertical displacement event(VDE)could be a big challenge to the device safety.For the steady-state operating(SSO)scenario,the limitation may rise from the ideal MHD mode,NTM,etc.This suggests that the MHD analysis of both operation scenarios should be done with different focusing.Preliminary analysis based on the current physics and engineering design of both two scenarios is given in this paper.Based on the analysis result of above,the future assessments might target at active control method and the effect of boron on MHD activities. 展开更多
关键词 MHD magnetic fusion MACRO-INSTABILITY
在线阅读 下载PDF
Review of the experiments for energetic particle physics on HL-2A 被引量:5
11
作者 X T DING W CHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第9期93-105,共13页
This paper reviews the energetic particle(EP) experiments during electron cyclotron resonance heating(ECRH) and neutral beam injection in the HL-2 A tokamak.A number of important results are summarized,which relat... This paper reviews the energetic particle(EP) experiments during electron cyclotron resonance heating(ECRH) and neutral beam injection in the HL-2 A tokamak.A number of important results are summarized,which relate to ITER physics,including the behavior of the multi-mode instability,the nonlinear interaction between wave-wave and wave-particles,the losses of EP induced by the instabilities,the effect of the EP instabilities on the thermal plasma confinement and the control of the EP instabilities by means of ECRH.Systematic experiments indicate that when the drive is great enough,the nonlinear effects and the multi-mode coexistence may play an important role,which affect the transport both of the EPs and the background plasma confinement,and these instabilities could be controlled.Some new phenomena about the EP induced instabilities discovered recently on the device,such as high frequency reversed shear Alfvén eigenmodes,Alfvénic ion temperature gradient modes,the geodesic acoustic mode induced by energetic electrons excited by interaction between tearing mode and beta induced Alfvén eigenmode and double e-fishbone in negative magnetic shear discharges etc,have also been presented in the paper. 展开更多
关键词 HL-2A tokamak energetic particle Alfven eigenmode plasma confinement
在线阅读 下载PDF
The research progress of an E//B neutral particle analyzer 被引量:2
12
作者 马龙 屈玉凡 +12 位作者 罗圆 谢德豪 汪彦熹 王硕 曲国峰 任培培 罗小兵 刘星泉 韩纪锋 Roy WADA 林炜平 臧临阁 朱敬军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期10-16,共7页
An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of ... An E//B neutral particle analyzer(NPA)has been designed and is under development at Sichuan University and Southwestern Institute of Physics.The main purpose of the E//B NPA is to measure the distribution function of fast ions in the HL-2A/3 tokamak.The E//B NPA contains three main units,i.e.the stripping unit,the analyzing unit and the detection unit.A gas stripping chamber was adopted as the stripping unit.The results of the simulations and beam tests for the stripping chamber are presented.Parallel electric and magnetic fields provided by a NdFeB permanent magnet and two parallel electric plates were designed and constructed for the analyzing unit.The calibration of the magnetic and electric fields was performed using a 50 kV electron cyclotron resonance ion source(ECRIS)platform.The detection unit consists of 32lutetium-yttrium oxyorthosilicate(LYSO)detector modules arranged in two rows.The response functions ofα,hydrogen ions(H^(+),H_(2)^(+)and H_(3)^(+))andγfor a detector module were measured with^(241)Am,^(137)Cs and^(152)Eu sources together with the 50 kV ECRIS platform.The overall results indicate that the designed E//B NPA device is capable of measuring the intensity of neutral hydrogen and deuteron atoms with energy higher than 20 keV. 展开更多
关键词 E//B neutral particle analyzer gas stripping lutetium-yttrium oxyorthosilicate electron cyclotron resonance ion source platform
在线阅读 下载PDF
Integrated analysis of plasma rotation effect on HL-3 hybrid scenario
13
作者 薛淼 郑国尧 +5 位作者 薛雷 李佳鲜 王硕 杜海龙 朱毅仁 周月 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期329-336,共8页
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t... The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density. 展开更多
关键词 HL-3 hybrid scenario toroidal rotation integrated modeling
在线阅读 下载PDF
Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport
14
作者 刘逸飞 李继全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期8-15,共8页
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic... The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient. 展开更多
关键词 gyro-Landau-fluid simulation impurity effects ion temperature gradient mode turbulence transport
在线阅读 下载PDF
Gyrokinetic simulation of magnetic-island-induced electric potential vortex mode
15
作者 王丰 李继全 +1 位作者 曲洪鹏 彭晓东 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期34-41,共8页
Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditi... Ion temperature gradient(ITG)-driven turbulence with embedded static magnetic islands is simulated by utilizing a gyrokinetic theory-based global turbulence transport code(GKNET)in this work.Different from the traditional equilibrium circular magnetic-surface average(EMSA)method,an advanced algorithm that calculates the perturbed magnetic-surface average(PMSA)of the electric potential has been developed to precisely deal with the zonal flow component in a non-circular magnetic surface perturbed by magnetic islands.Simulations show that the electric potential vortex structure inside islands induced by the magnetic islands is usually of odd parity when using the EMSA method.It is found that the odd symmetry vortex can transfer into an even one after a steep zonal flow gradient,i.e.the flow shear has been built in the vicinity of the magnetic islands by adopting the PMSA algorithm.The phase of the potential vortex in the poloidal cross section is coupled with the zonal flow shear.Such an electric potential vortex mode may be of essential importance in wide topics,such as the turbulence spreading across magnetic islands,neoclassical tearing mode physics,and also the interaction dynamics between the micro-turbulence and MHD activities. 展开更多
关键词 magnetic islands electric vortex ITG perturbed magnetic flux surface average
在线阅读 下载PDF
Geant4 simulation of fast-electron bremsstrahlung imaging at the HL-3 tokamak
16
作者 Shi-Kui Cheng Yi-Po Zhang +4 位作者 Yue-Jiang Shi Jie Zhang Shuai Guan Hong-Bing Xu Qiu-Lei Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第9期213-229,共17页
To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-... To further research on high-parameter plasma,we plan to develop a two-dimensional hard X-ray(HXR)imaging system at the HL-3 tokamak to measure HXRs with energies ranging from 20 to 300 keV.The application of an array-structured detector ensures that this system can measure HXR-radiation spectra from the entire plasma cross section.Therefore,it is suitable for the study of fast-electron physics,such as radio-frequency wave current drives,fast electrons driving instabilities,and plasma disruptions in fusion research.In this study,we develop a simulation for calculating fast-electron bremsstrahlung in the HL-3 tokamak based on the Monte Carlo simulation code Geant4,in which the plasma geometry and forward scattering of fast-electron bremsstrahlung are considered.The preliminary calculation results indicate that the HXR energy deposi-tion on the detector is symmetrically distributed,even though the plasma distribution is asymmetric owing to the toroidal effect.These simulation results are helpful in constructing the relationship between the energy deposition on the detector and parameter distribution on the plasma cross section during HL-3 experiments.This is beneficial for the reconstruction of the fast-electron-distribution function and for optimizing the design of the HXR-imaging system. 展开更多
关键词 GEANT4 SIMULATION HL-3 TOKAMAK Fast-electron bremsstrahlung Hard X-ray imaging
在线阅读 下载PDF
Design of a 3D-printed liquid lithium divertor target plate and its interaction with high-density plasma
17
作者 苑聪聪 叶宗标 +9 位作者 刘建星 郭恒鑫 彭怡超 廖加术 陈波 陈建军 王宏彬 韦建军 张秀杰 芶富均 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期112-120,共9页
A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capil... A liquid Li divertor is a promising alternative for future fusion devices.In this work a new divertor model is proposed,which is processed by 3D-printing technology to accurately control the size of the internal capillary structure.At a steady-state heat load of 10 MW m^(-2),the thermal stress of the tungsten target is within the bearing range of tungsten by finite-element simulation.In order to evaluate the wicking ability of the capillary structure,the wicking process at 600℃ was simulated by FLUENT.The result was identical to that of the corresponding experiments.Within 1 s,liquid lithium was wicked to the target surface by the capillary structure of the target and quickly spread on the target surface.During the wicking process,the average wicking mass rate of lithium should reach 0.062 g s^(-1),which could even supplement the evaporation requirement of liquid lithium under an environment>950℃.Irradiation experiments under different plasma discharge currents were carried out in a linear plasma device(SCU-PSI),and the evolution of the vapor cloud during plasma irradiation was analyzed.It was found that the target temperature tends to plateau despite the gradually increased input current,indicating that the vapor shielding effect is gradually enhanced.The irradiation experiment also confirmed that the 3D-printed tungsten structure has better heat consumption performance than a tungsten mesh structure or multichannel structure.These results reveal the application potential and feasibility of a 3D-printed porous capillary structure in plasma-facing components and provide a reference for further liquid-solid combined target designs. 展开更多
关键词 fusion DIVERTOR 3D-printing TUNGSTEN LITHIUM liquid metal
在线阅读 下载PDF
Wave field structure and power coupling features of blue-core helicon plasma driven by various antenna geometries and frequencies
18
作者 王超 刘佳 +3 位作者 苌磊 卢凌峰 张世杰 周帆涛 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期480-487,共8页
This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagat... This paper deals with wave propagation and power coupling in blue-core helicon plasma driven by various antennas and frequencies.It is found that compared to non-blue-core mode,for blue-core mode,the wave can propagate in the core region,and it decays sharply outside the core.The power absorption is lower and steeper in radius for blue-core mode.Regarding the effects of antenna geometry for blue-core mode,it shows that half helix antenna yields the strongest wave field and power absorption,while loop antenna yields the lowest.Moreover,near axis,for antennas with m=+1,the wave field increases with axial distance.In the core region,the wave number approaches to a saturation value at much lower frequency for non-blue-core mode compared to blue-core mode.The total loading resistance is much lower for blue-core mode.These findings are valuable to understanding the physics of blue-core helicon discharge and optimizing the experimental performance of blue-core helicon plasma sources for applications such as space propulsion and material treatment. 展开更多
关键词 helicon plasma helicon wave helicon discharge radio frequency plasma source
在线阅读 下载PDF
Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3
19
作者 Qingrui ZHOU Yanjie ZHANG +5 位作者 Chaofeng SANG Jiaxian LI Guoyao ZHENG Yilin WANG Yihan WU Dezhen WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期29-38,共10页
Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress... Tungsten(W)accumulation in the core,depending on W generation and transport in the edge region,is a severe issue in fusion reactors.Compared to standard divertors(SDs),snowflake divertors(SFDs)can effectively suppress the heat flux,while the impact of magnetic configurations on W core accumulation remains unclear.In this study,the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations(SD versus SFD)on W accumulation during neon injection in HL-3.It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux.The reasons for this are:(1)W impurities in the core of the SFD mainly originate from the inner divertor,which has a short leg,and the source is close to the divertor entrance and upstream separatrix.Furthermore,the W ionization source(S_(W0))is much stronger,especially near the divertor entrance.(2)The region overlap of S_(W0)and F_(W,TOT)pointing upstream promote W accumulation in the core.Moreover,the influence of W source locations at the inner target on W transport in the SFD is investigated.Tungsten impurity in the core is mainly contributed by target erosion in the common flux region(CFR)away from the strike point.This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point,which sequentially increases W penetration.Therefore,the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core. 展开更多
关键词 snowflake divertor neon seeding tungsten transport DIVIMP HL-3
在线阅读 下载PDF
An improved TDE technique for derivation of 2D turbulence structures based on GPI data in toroidal plasma
20
作者 王威策 程钧 +12 位作者 石中兵 严龙文 黄治辉 弋开阳 吴娜 何钰 邹千 陈熙 张文 陈建 聂林 季小全 钟武律 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期131-137,共7页
This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarc... This paper reports an improved time-delay estimation(TDE)technique for the derivation of turbulence structures based on gas-puff imaging data.The improved TDE technique,integrating an inverse timing search and hierarchical strategy,offers superior accuracy in calculating turbulent velocity field maps and analyzing blob dynamics,which has the power to obtain the radial profiles of equilibrium poloidal velocity,blob size and its radial velocity,even the fluctuation analysis,such as geodesic acoustic modes and quasi-coherent mode,etc.This improved technique could provide important 2D information for the study of edge turbulence and blob dynamics,advancing the understanding of edge turbulence physics in fusion plasmas. 展开更多
关键词 gas-puff imaging TDE method TURBULENCE velocity field map
在线阅读 下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部