期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Model-based deep learning for fiber bundle infrared image restoration 被引量:2
1
作者 Bo-wen Wang Le Li +4 位作者 Hai-bo Yang Jia-xin Chen Yu-hai Li Qian Chen Chao Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期38-45,共8页
As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of u... As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of universal honeycomb artifacts and low signal-to-noise ratio(SNR)imaging in fiber bundles,the iterative super-resolution reconstruction network based on a physical model is proposed.Under the constraint of solving the two subproblems of data fidelity and prior regularization term alternately,the network can efficiently“regenerate”the lost spatial resolution with deep learning.By building and calibrating a dual-path imaging system,the real-world dataset where paired low-resolution(LR)-high-resolution(HR)images on the same scene can be generated simultaneously.Numerical results on both the United States Air Force(USAF)resolution target and complex target objects demonstrate that the algorithm can restore high-contrast images without pixilated noise.On the basis of super-resolution reconstruction,compound eye image composition based on fiber bundle is also embedded in this paper for the actual imaging requirements.The proposed work is the first to apply a physical model-based deep learning network to fiber bundle imaging in the infrared band,effectively promoting the engineering application of thermal radiation detection. 展开更多
关键词 Fiber bundle Deep learning Infrared imaging Image restoration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部