Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that...Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.展开更多
Catalytic methylation of toluene with methanol is an important alternative pathway for xylene production.Previous studies have indicated that methanol always undergoes several side reactions on acidic zeolites,resulti...Catalytic methylation of toluene with methanol is an important alternative pathway for xylene production.Previous studies have indicated that methanol always undergoes several side reactions on acidic zeolites,resulting in oxygencontaining byproducts such as dimethyl ethers,ketones,and carboxylic acids.Herein,the presence and distribution of the oxygenated compounds formed during toluene methylation were firstly examined by systematic chromatographic analysis.Plausible formation mechanisms for the various oxygenates are discussed.The most problematic byproduct is found to be acetic acid,which can lead to inferior product quality and damage downstream units.A feasible solution is presented for oxygenate removal after toluene methylation,in which acetic acid is eliminated by catalytic decomposition into low-boilingpoint acetone over a MgO catalyst.This process allows for all of the low-boiling-point oxygenates,including methanol,dimethyl ether,acetone,and butanone,to be removed from the aromatics phase,taking advantage of the temperature of the reaction effluent and standard distillation equipment.X-ray diffraction was used to characterize the crystal phase of the fresh and used MgO decarbonylation catalysts,while thermogravimetry/mass spectrometry and Fourier-transform infrared spectroscopy were applied to investigate the transformation mechanism of acetic acid over the decarbonylation catalyst.CO insertion and ketonization of acetic acid accounted for the formation and elimination of acetic acid,respectively.The combined methylation/decarbonylation process should enable the production of high-quality xylenes,an important industrial feedstock,by overcoming the main technical obstacles associated with the toluene methylation process.展开更多
The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation sect...The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process.展开更多
Biobutanol is attracting increasingly interest as a source of renewable energy and biofuels because of its many advantages over bioethanol that include higher energy density, fuel efficiency, and reduced engine damage...Biobutanol is attracting increasingly interest as a source of renewable energy and biofuels because of its many advantages over bioethanol that include higher energy density, fuel efficiency, and reduced engine damages. Currently, there is a growing interest in producing biobutanol from bioethanol, in view of the tremendous potential benefits of this transformation for the bulk production of biobutanol in a target specific manner. This perspective paper describes recent progress for the ethanol to butanol process. The different catalysts, including homogeneous and heterogeneous catalytic systems, for ethanol to butanol are outlined and compared, and the key issues and requirements for future developments are highlighted. A major challenge for further development and application of ethanol to butanol process is to find an optimal balance between different catalytic functions and to suppress the formation of side products that has plagued most catalytic bioethanol upgrading systems. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.展开更多
基金the National Key R&D Plan of the Ministry of Science and Technology of China(2022YFE0122400)National Natural Science Foundation of China(52002238,22102207)+1 种基金Science and Technology Commission of Shanghai Municipality(22ZR1423800,21ZR1465200,23ZR1423600)Shanghai Municipal Education Commission and the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation(B49G680115).
文摘Silicon stands as a key anode material in lithium-ion battery ascribing to its high energy density.Nevertheless,the poor rate performance and limited cycling life remain unresolved through conventional approaches that involve carbon composites or nanostructures,primarily due to the un-controllable effects arising from the substantial formation of a solid electrolyte interphase(SEI)during the cycling.Here,an ultra-thin and homogeneous Ti doping alumina oxide catalytic interface is meticulously applied on the porous Si through a synergistic etching and hydrolysis process.This defect-rich oxide interface promotes a selective adsorption of fluoroethylene carbonate,leading to a catalytic reaction that can be aptly described as“molecular concentration-in situ conversion”.The resultant inorganic-rich SEI layer is electrochemical stable and favors ion-transport,particularly at high-rate cycling and high temperature.The robustly shielded porous Si,with a large surface area,achieves a high initial Coulombic efficiency of 84.7%and delivers exceptional high-rate performance at 25 A g^(−1)(692 mAh g^(−1))and a high Coulombic efficiency of 99.7%over 1000 cycles.The robust SEI constructed through a precious catalytic layer promises significant advantages for the fast development of silicon-based anode in fast-charging batteries.
基金We gratefully acknowledge the support from the National 973 Program of China(Grant No.2003CB615800).
文摘Catalytic methylation of toluene with methanol is an important alternative pathway for xylene production.Previous studies have indicated that methanol always undergoes several side reactions on acidic zeolites,resulting in oxygencontaining byproducts such as dimethyl ethers,ketones,and carboxylic acids.Herein,the presence and distribution of the oxygenated compounds formed during toluene methylation were firstly examined by systematic chromatographic analysis.Plausible formation mechanisms for the various oxygenates are discussed.The most problematic byproduct is found to be acetic acid,which can lead to inferior product quality and damage downstream units.A feasible solution is presented for oxygenate removal after toluene methylation,in which acetic acid is eliminated by catalytic decomposition into low-boilingpoint acetone over a MgO catalyst.This process allows for all of the low-boiling-point oxygenates,including methanol,dimethyl ether,acetone,and butanone,to be removed from the aromatics phase,taking advantage of the temperature of the reaction effluent and standard distillation equipment.X-ray diffraction was used to characterize the crystal phase of the fresh and used MgO decarbonylation catalysts,while thermogravimetry/mass spectrometry and Fourier-transform infrared spectroscopy were applied to investigate the transformation mechanism of acetic acid over the decarbonylation catalyst.CO insertion and ketonization of acetic acid accounted for the formation and elimination of acetic acid,respectively.The combined methylation/decarbonylation process should enable the production of high-quality xylenes,an important industrial feedstock,by overcoming the main technical obstacles associated with the toluene methylation process.
文摘The PRO/Ⅱ process simulation software was applied to carry out simulated calculation of the aromatics fractionation unit and the heat integrated rectification process was proposed for the aromatics fractionation section of the 1.0 Mt/a toluene disproportionation unit at the Zhenhai Refining and Chemical Company. The optimized operating parameters were obtained through the energy utilization analysis,process simulation,heat exchanger calculations and comparisons of utility consumption. The operation of commercialized unit has revealed that the design parameters of each rectification column were consistent with the operation results,and the utility consumption was about 47% lower than the traditional heat integrated process.
基金supported by the National Natural Science Foundation of China(21273044,21473035,and 91545108)SINOPEC(X514005)the Open project of State Key Laboratory of Chemical Engineering(SKL-Ch E-15C02)
文摘Biobutanol is attracting increasingly interest as a source of renewable energy and biofuels because of its many advantages over bioethanol that include higher energy density, fuel efficiency, and reduced engine damages. Currently, there is a growing interest in producing biobutanol from bioethanol, in view of the tremendous potential benefits of this transformation for the bulk production of biobutanol in a target specific manner. This perspective paper describes recent progress for the ethanol to butanol process. The different catalysts, including homogeneous and heterogeneous catalytic systems, for ethanol to butanol are outlined and compared, and the key issues and requirements for future developments are highlighted. A major challenge for further development and application of ethanol to butanol process is to find an optimal balance between different catalytic functions and to suppress the formation of side products that has plagued most catalytic bioethanol upgrading systems. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.