期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Interfacial design of silicon/carbon anodes for rechargeable batteries:A review 被引量:7
1
作者 Quanyan Man Yongling An +3 位作者 Chengkai Liu Hengtao Shen Shenglin Xiong Jinkui Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期576-600,I0014,共26页
Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloy... Silicon(Si)has been studied as a promising alloying type anode for lithium-ion batteries due to its high specific capacity,low operating potential and abundant resources.Nevertheless,huge volume expansion during alloying/dealloying processes and low electronic conductivity of Si anodes restrict their electrochemical performance.Thus,carbon(C)materials with special physical and chemical properties are applied in Si anodes to effectively solve these problems.This review focuses on current status in the exploration of Si/C anodes,including the lithiation mechanism and solid electrolyte interface formation,various carbon sources in Si/C anodes,such as traditional carbon sources(graphite,pitch,biomass),and novel carbon sources(MXene,graphene,MOFs-derived carbon,graphdiyne,etc.),as well as interfacial bonding modes of Si and C in the Si/C anodes.Finally,we summarize and prospect the selection of carbonaceous materials,structural design and interface control of Si/C anodes,and application of Si/C anodes in all-solid-state lithium-ion batteries and sodium-ion batteries et al.This review will help researchers in the design of novel Si/C anodes for rechargeable batteries. 展开更多
关键词 Silicon/carbon anodes Lithium-ion batteries Interfacial reaction Carbon sources Interface bonding
在线阅读 下载PDF
Diverse Structural Design Strategies of MXene‑Based Macrostructure for High‑Performance Electromagnetic Interference Shielding 被引量:6
2
作者 Yue Liu Yadi Wang +4 位作者 Na Wu Mingrui Han Wei Liu Jiurong Liu Zhihui Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期419-448,共30页
There is an urgent demand for flexible,lightweight,mechanically robust,excellent electromagnetic interference(EMI)shielding materials.Two-dimensional(2D)transition metal carbides/nitrides(MXenes)have been potential ca... There is an urgent demand for flexible,lightweight,mechanically robust,excellent electromagnetic interference(EMI)shielding materials.Two-dimensional(2D)transition metal carbides/nitrides(MXenes)have been potential candidates for the construction of excellent EMI shielding materials due to their great electrical electroconductibility,favorable mechanical nature such as flexibility,large aspect ratios,and simple processability in aqueous media.The applicability of MXenes for EMI shielding has been intensively explored;thus,reviewing the relevant research is beneficial for advancing the design of high-performance MXene-based EMI shields.Herein,recent progress in MXene-based macrostructure development is reviewed,including the associated EMI shielding mechanisms.In particular,various structural design strategies for MXene-based EMI shielding materials are highlighted and explored.In the end,the difficulties and views for the future growth of MXene-based EMI shields are proposed.This review aims to drive the growth of high-performance MXene-based EMI shielding macrostructures on basis of rational structural design and the future high-efficiency utilization of MXene. 展开更多
关键词 MXene COMPOSITE Electromagnetic interference shielding MICROSTRUCTURE ELECTRONICS
在线阅读 下载PDF
Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na^(+)channel
3
作者 Fan Wang Jingjing Xu +4 位作者 Yanbin Ge Shengyong Xu Yanjun Fu Caiyu Shi Jianming Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第6期741-749,共9页
The physical processes occurring at open Na^(+) channels in neural fibers are essential for the understanding of the nature of neural signals and the mechanism by which the signals are generated and transmitted along ... The physical processes occurring at open Na^(+) channels in neural fibers are essential for the understanding of the nature of neural signals and the mechanism by which the signals are generated and transmitted along nerves.However,there is a less generally accepted description of these physical processes.We studied changes in the transmembrane ionic flux and the resulting two types of electromagnetic signals by simulating the Na^(+) transport across a bionic nanochannel model simplified from voltage-gated Na^(+) channels.The results show that the Na^(+) flux can reach a steady state in approximately 10 ns due to the dynamic equilibrium of the Na^(+) ion concentration difference between both sides of the membrane.After characterizing the spectrum and transmission of these two electromagnetic signals,the low-frequency transmembrane electric field is regarded as the physical quantity transmitting in the waveguide-like lipid dielectric layer and triggering the neighboring voltage-gated channels.Factors influencing the Na^(+) flux transport are also studied.The impact of the Na^(+) concentration gradient is found to be higher than that of the initial transmembrane potential on the Na^(+) transport rate,and introducing the surface-negative charge in the upper third channel could increase the transmembrane Na^(+) current.This work can be further studied by improving the simulation model;however,the current work helps to better understand the electrical functions of voltage-gated ion channels in neural systems. 展开更多
关键词 neural signals sodium-ion channel transmembrane current electromagnetic field
在线阅读 下载PDF
Nitrogen‑Doped Magnetic‑Dielectric‑Carbon Aerogel for High‑Efficiency Electromagnetic Wave Absorption 被引量:2
4
作者 Shijie Wang Xue Zhang +5 位作者 Shuyan Hao Jing Qiao Zhou Wang Lili Wu Jiurong Liu Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期313-327,共15页
Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facil... Carbonbased aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight,controllable fabrication and versatility.Nevertheless,developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption(EWA)materials with a broad effective absorption bandwidth(EAB)and strong absorption yet hits some snags.Herein,the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment,homogeneous and abundant nickel(Ni)and manganese oxide(MnO)particles in situ grew on the carbon aerogels.Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels,the nitrogen-doped magnetic-dielectric-carbon aerogel(Ni/MnO-CA)suggests a praiseworthy EWA performance,with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss(RLmin)of−64.09 dB,while achieving a specific reflection loss of−253.32 dB mm−1.Furthermore,the aerogel reveals excellent radar stealth,infrared stealth,and thermal management capabilities.Hence,the high-performance,easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection,electronic devices and aerospace. 展开更多
关键词 Electromagnetic wave absorption Wide bandwidth Dielectric-magnetic synergy MULTIFUNCTION
在线阅读 下载PDF
Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor
5
作者 Jing Chen Ming-Yuan Sun +8 位作者 Zhen-Hua Wang Zheng Zhang Kai Zhang Shuai Wang Yu Zhang Xiaoming Wu Tian-Ling Ren Hong Liu Lin Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期134-188,共55页
Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp... Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors. 展开更多
关键词 Two-dimensional transistors Dimension limits Performance limits Memory devices Artificial synapses
在线阅读 下载PDF
Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials 被引量:14
6
作者 Shuyan Hao Hecheng Han +10 位作者 Zhengyi Yang Mengting Chen Yanyan Jiang Guixia Lu Lun Dong Hongling Wen Hui Li Jiurong Liu Lili Wu Zhou Wang Fenglong Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期107-142,共36页
The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health,which drives researchers to develop antibiotic-free strategies to eradicate these fie... The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health,which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes.Although enormous achievements have already been achieved,it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation.Recently,photothermal therapy(PTT)has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance.Until now,numerous photothermal agents have been studied for antimicrobial PTT.Among them,MXenes(a type of two-dimensional transition metal carbides or nitrides)are extensively investigated as one of the most promising candidates due to their high aspect ratio,atomic-thin thickness,excellent photothermal performance,low cytotoxicity,and ultrahigh dispersibility in aqueous systems.Besides,the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials.In this review,the synthetic approaches and textural properties of MXenes have been systematically presented first,and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented.Subsequently,recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes,including in vitro and in vivo sterilization,solar water evaporation and purification,and flexible antibacterial fabrics.Last but not least,the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes. 展开更多
关键词 MXenes Antibacterial mechanisms Photothermal properties Antibacterial applications
在线阅读 下载PDF
Well-dispersed SnO2 nanocrystals on N-doped carbon nanowires as efficient electrocatalysts for carbon dioxide reduction 被引量:2
7
作者 Baohua Zhang Lizhen Sun +2 位作者 Yueqing Wang Si Chen Jintao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期7-14,共8页
The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient... The conversion of carbon dioxide into valuable organic compounds is a highly promising approach to address the energy issues and environmental problems(e.g., global warming). Herein, we presents a facile and efficient method to prepare highly dense and well-dispersed SnO2 nanocrystals on 1 D N-doped carbon nanowires as advanced catalysts for the efficient electroreduction of CO2 to formate. The ultrasmall SnO2 coated on the N-doped carbon nanowires(SnO2@N-CNW) has been synthesized via the simple hydrothermal treatment coupled with a pyrolysis process. The unique structure enables to expose the active tin oxide and also provides the facile pathways for rapid transfer of electron and electrolyte along with the highly porous carbon foam composed with interconnected carbon nanowires. Therefore, SnO2@NCNW electrocatalyst exhibits good durability and high selectivity for formate formation with a Faradaic efficiency of ca. 90%. This work demonstrates a simple method to rationally design high-dense tin oxide nanocrystals on the conductive carbon support as advanced catalysts for CO2 electroreduction. 展开更多
关键词 SNO2 nanocrystal N-DOPING ELECTROCATALYST CARBON dioxide reduction CARBON nanowire
在线阅读 下载PDF
Rationally designed hollow carbon nanospheres decorated with S,P co-doped NiSe_(2) nanoparticles for high-performance potassium-ion and lithium-ion batteries 被引量:3
8
作者 Jiajia Ye Zizhong Chen +4 位作者 Zhiqiang Zheng Zhanghua Fu Guanghao Gong Guang Xia Cheng Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期401-411,I0011,共12页
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda... Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance. 展开更多
关键词 S P co-doping NiSe_(2)nanoparticles Hollow carbon nanospheres Potassium-ion batteries Lithium-ion batteries
在线阅读 下载PDF
Recent advances in Ga-based solar-blind photodetectors 被引量:1
9
作者 Ming-sheng Xu Lei Ge +3 位作者 Ming-ming Han Jing Huang Hua-yong Xu Zai-xing Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期49-57,共9页
Solar-blind ultraviolet photodetectors have many advantages, such as low false alarm rates, the ability to detect weak signals, and high signal-to-noise ratios. Among the various functional solar-blind ultraviolet pho... Solar-blind ultraviolet photodetectors have many advantages, such as low false alarm rates, the ability to detect weak signals, and high signal-to-noise ratios. Among the various functional solar-blind ultraviolet photodetectors, Ga-based alloys of AlGaN and Ga_2O_3 are the most commonly adopted channel semiconductor materials and have attracted extensive research attention in the past decades. This review presents an overview of the recent progress in Ga-based solar-blind photodetectors. In case of AlGaN-based solar-blind ultraviolet photodetectors, the response properties can be improved by optimizing the AlN nucleation layer and designing the avalanche structure. On the other hand, we also discuss the morphology and growth methods of Ga_2O_3 nanomaterials and their effect on the performance of the corresponding solarblind photodetectors. The mechanically exfoliated Ga_2O_3 flakes show good potential for ultraviolet detection. Also, Ga_2O_3 nanoflowers and nanowires reveal perfect response to ultraviolet light. Finally, the challenges and future development of Ga-based functional solar-blind ultraviolet photodetectors are summarized. 展开更多
关键词 solar-blind photodetector AlGaN GA2O3
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部