Aiming at the complex tilting process of quad tilt-rotor(QTR)transition mode,this paper studies the manipulation strategy in transition mode to solve the problem of manipulation redundancy and coupling in transition m...Aiming at the complex tilting process of quad tilt-rotor(QTR)transition mode,this paper studies the manipulation strategy in transition mode to solve the problem of manipulation redundancy and coupling in transition mode of quad tilt rotor.The variations of the manipulation derivative are analyzed in the tilting process.Through the flight control simulation and flight test of the quad tilt-rotor,the validity of the control system and the rationality of the manipulation strategy are verified.展开更多
The aerodynamic model of propeller,wing,fuselage and vertical tail are established for the tilt quad rotor(TQR)with partial tilt-wing,and then the flight dynamic model is established.Based on the six-degree-of-freedom...The aerodynamic model of propeller,wing,fuselage and vertical tail are established for the tilt quad rotor(TQR)with partial tilt-wing,and then the flight dynamic model is established.Based on the six-degree-of-freedom equation and the small disturbance linearization assumption,the trimming and stability of the tilt quad rotor with partial tilt-wing and the tilt quad rotor without tilt-wing are analyzed.The results show that in the hovering state,due to the existence of tilt-wing,the propeller wake reduces the downwash on the wing,thereby reducing the vertical weight gain of the aircraft.It is beneficial to increase the endurance time and improve the endurance performance.The transition corridor of the TQR with tilt-wing is narrower than that of the TQR without tilt-wing,but the transition corridor of TQR with tilt-wing still has a large space for design.Furthermore,the stability analysis shows that the Dutch roll damping ratio is larger,and in other modes the aircraft has a certain stability.The manipulation response analysis shows that in the transition mode the lateral-directional coupling is strong.展开更多
An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the in...An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the inlet boundary conditions according to the exact potential flow solution.Then the wave evolution is simulated by solving the unsteady incompressible Navier-Stokes(N-S)equations coupled with the volume of fluid method.For the small amplitude wave with reasonable wave parameters,the numerical wave result agrees well with that of the given wave model.Finally,a monopile support configuration is introduced and a CFD-based load calculation method is established to accurately calculate the unsteady load under the combined action of wave and wind.The computed unsteady wave load on a small-size monopile support located in the small amplitude wave flow coincides with that of the Morison formula.The load calculations are also performed on a large-size monopile support and a monopile-supported offshore wind turbine under the combined action of small amplitude wave and wind.展开更多
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Aiming at the complex tilting process of quad tilt-rotor(QTR)transition mode,this paper studies the manipulation strategy in transition mode to solve the problem of manipulation redundancy and coupling in transition mode of quad tilt rotor.The variations of the manipulation derivative are analyzed in the tilting process.Through the flight control simulation and flight test of the quad tilt-rotor,the validity of the control system and the rationality of the manipulation strategy are verified.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The aerodynamic model of propeller,wing,fuselage and vertical tail are established for the tilt quad rotor(TQR)with partial tilt-wing,and then the flight dynamic model is established.Based on the six-degree-of-freedom equation and the small disturbance linearization assumption,the trimming and stability of the tilt quad rotor with partial tilt-wing and the tilt quad rotor without tilt-wing are analyzed.The results show that in the hovering state,due to the existence of tilt-wing,the propeller wake reduces the downwash on the wing,thereby reducing the vertical weight gain of the aircraft.It is beneficial to increase the endurance time and improve the endurance performance.The transition corridor of the TQR with tilt-wing is narrower than that of the TQR without tilt-wing,but the transition corridor of TQR with tilt-wing still has a large space for design.Furthermore,the stability analysis shows that the Dutch roll damping ratio is larger,and in other modes the aircraft has a certain stability.The manipulation response analysis shows that in the transition mode the lateral-directional coupling is strong.
基金supported partly by the National Basic Research Program of China("973"Program)(No.2014CB046200)the National Natural Science Foundation of China(No.11372135)the NUAA Fundamental Research Funds(No.NS2013005)
文摘An unsteady load calculation method for the support configuration of a monopile-supported offshore wind turbine is developed based on the Fluent software platform.Firstly,the water wave is generated by imposing the inlet boundary conditions according to the exact potential flow solution.Then the wave evolution is simulated by solving the unsteady incompressible Navier-Stokes(N-S)equations coupled with the volume of fluid method.For the small amplitude wave with reasonable wave parameters,the numerical wave result agrees well with that of the given wave model.Finally,a monopile support configuration is introduced and a CFD-based load calculation method is established to accurately calculate the unsteady load under the combined action of wave and wind.The computed unsteady wave load on a small-size monopile support located in the small amplitude wave flow coincides with that of the Morison formula.The load calculations are also performed on a large-size monopile support and a monopile-supported offshore wind turbine under the combined action of small amplitude wave and wind.