期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Effects of Airflow Field on Droplets Diameter inside the Corrugated Packing of a Rotating Packed Bed 被引量:4
1
作者 Xu Chengcheng Jiao Weizhou +3 位作者 Liu Youzhi Guo Liang Yuan Zhiguo Zhang Qiaoling 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第4期38-46,共9页
Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly throug... Rotating packing bed(RPB) has a better mixing performance than traditional mixers and shows potential application in the petroleum industry. However, acquisition of information about the mixing process directly through experiments is difficult because of the compact structure and complex multiphase flow pattern in RPB. To study the mixing characteristic, Fluent, the computational fluid dynamics(CFD) software, was used to explore the effect of airflow field on droplet diameter. For conducting calculations, the gas-liquid two-phase flow inside the packing was simulated with the RNG k-ε turbulence model and the Lagrange Discrete Phase Model(DPM), respectively. The numerical calculation results showed that coalescence and breakup of droplets can take place in the gas phase flow inside the packing and can be strengthened with increased rotating speed, thereby leading to the enlargement of the average diameter. 展开更多
关键词 ROTATING packed BED computational fluid dynamics GAS-LIQUID flow field diameter MIXING
在线阅读 下载PDF
Degradation of nitrobenzene-containing wastewater by sequential nanoscale zero valent iron-persulfate process 被引量:4
2
作者 Jingjuan Qiao Weizhou Jiao Youzhi Liu 《Green Energy & Environment》 SCIE CSCD 2021年第6期910-919,共10页
As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process w... As nitrobenzene(NB)is structurally stable and difficult to degrade due to the presence of an electron withdrawing group(nitro group).The sequential nanoscale zero valent iron-persulfate(NZVI-Na_(2)S_(2)O_(8))process was proposed in this study for the degradation NB-containing wastewater.The results showed that the NB degradation efficiency and the total organic carbon removal efficiency in the sequential NZVINa_(2)S_(2)O_(8)process were 100%and 49.25%,respectively,at a NB concentration of 200 mg L^(-1),a NZVI concentration of 0.75 g L^(-1),a Na_(2)S_(2)O_(8)concentration of 26.8 mmol L^(-1),an initial pH of 5,and a reaction time of 30 min,which were higher than those(88.53%and 35.24%,respectively)obtained in the NZVI/Na_(2)S_(2)O_(8)process.Sulfate radicals(SO_(4)·-)and hydroxyl radicals(·OH)generated in the reaction were identified directly by electron paramagnetic resonance spectroscopy and indirectly by radical capture experiments,and it was shown that both SO_(4)^(·-)and·OH played a major role in the sequential NZVI-Na_(2)S_(2)O_(8)process.The possible pathways involved in the reduction of NB to aniline(AN)and the further oxidative degradation of AN were determined by gas chromatography-mass spectrometry. 展开更多
关键词 Nanoscale zero valent iron Impinging stream-rotating packed bed Sequential NZVI-Na2S2O8process NITROBENZENE Degradation pathways
在线阅读 下载PDF
Selection of Chelated Fe(Ⅲ)/Fe(Ⅱ) Catalytic Oxidation Agents for Desulfurization Based on Iron Complexation Method 被引量:5
3
作者 Luo Ying Liu Youzhi +2 位作者 Qi Guisheng Guo Huidong Zhu Zhengfeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第2期50-58,共9页
Optimization of factors influencing the experiments on reactions involving 8 different chelating agents and soluble Fe(III)/Fe(II) salts was carried out to yield chelated iron complexes. A combination of optimized inf... Optimization of factors influencing the experiments on reactions involving 8 different chelating agents and soluble Fe(III)/Fe(II) salts was carried out to yield chelated iron complexes. A combination of optimized influencing factors has resulted in a Fe chelating capacity of the iron-based desulfurization solution to be equal to 6.83—13.56 g/L at a redox potential of 0.185—0.3. The desulfurization performance of Fe(III)/Fe(II) chelating agents was investigated on a simulated sulfur-containing industrial gas composed of H2 S and N2 in a cross-flow rotating packed bed. Test results have revealed that the proposed iron-based desulfurization solution showed a sulfur removal efficiency of over 99% along with a Fe chelating capacity exceeding 1.35 g/L. This desulfurization technology which has practical application prospect is currently in the phase of commercial scale-up study. 展开更多
关键词 hydrogen sulfide chelated iron catalytic oxidation factor analysis redox
在线阅读 下载PDF
Degradation of Nitrobenzene Wastewater via Iron/Carbon Micro-electrolysis Enhanced by Ultrasound Coupled with Hydrogen Peroxide 被引量:3
4
作者 Qin Yuejiao Yu Lisheng +2 位作者 Luo Shuai Jiao Weizhou Liu Youzhi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第4期72-81,共10页
The zero valent iron/granular active carbon(ZVI/GAC) micro-electrolysis enhanced by ultrasound(US) coupled with hydrogen peroxide(H_2O_2) was investigated for the deep degradation of nitrobenzene-containing wastewater... The zero valent iron/granular active carbon(ZVI/GAC) micro-electrolysis enhanced by ultrasound(US) coupled with hydrogen peroxide(H_2O_2) was investigated for the deep degradation of nitrobenzene-containing wastewater. The results of scanning electron microscopy-energy dispersive X-rays analysis(SEM-EDS) demonstrated that continuously accelerated regeneration of ZVI and GAC in situ by US could improve the process for converting nitrobenzene(NB) to aniline(AN). H_2O_2 was decomposed catalytically by the byproduct Fe^(2+) ions generated in the micro-electrolysis process to hydroxyl radicals and the organic pollutants in the wastewater were finally mineralized to CO2 and H2O. Effects of the ZVI dosage, the ZVI/GAC mass ratio, the initial pH value and the H_2O_2 dosage on the efficiency for degradation of NB were studied in these experiments. The optimal operating conditions covered a ZVI dosage of 15 g/L, a ZVI/GAC mass ratio of 1:2,an initial pH value of 3 and a H_2O_2 dosage of 4 mL. In this case, the NB removal efficiency reached 97.72% and the total organic carbon(TOC) removal efficiency reached 73.42% at a NB concentration of 300 mg/L. The reduction of NB by USZVI/GAC followed the pseudo-first-order kinetics model, and the pseudo-first-order rate constants were given at different initial pH values. The reaction intermediates such as AN, benzoquinonimine, p-benzoquinone, p-nitrophenol and other organic acids were detected and a probable pathway for NB degradation has been proposed. 展开更多
关键词 iron/carbon MICRO-ELECTROLYSIS ULTRASOUND hydrogen peroxide NITROBENZENE wastewater treatment DEGRADATION mechanisms
在线阅读 下载PDF
Optimization of High-Gravity Chelated Iron Process for Removing H_2S Based on Response Surface Methodology 被引量:3
5
作者 Luo Ying Zhang Zhongzhe +3 位作者 Qi Jibing Li Gang Qi Guisheng Liu Youzhi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第3期87-93,共7页
By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction met... By using a mixture of N2 and H2S as the simulated APG(associated petroleum gas), the desulfurization experiment was performed in a cross-flow rotating packed bed(RPB) based on the chelated iron oxidation-reduction method. In order to determine the operating conditions of the system, the effects of the concentration of Fe3+ ions(ranging from 0.1 to 0.2 mol/L), the liquid-gas volume ratio(ranging from 15 to 25 L/m3) and the high gravity factor(ranging from 36 to 126) on the removal of H2 S were studied by means of the Box-Behnken design(BBD) under response surface methodology(RSM). The overall results have demonstrated that the BBD with an experimental design can be used effectively in the optimization of the desulfurization process. The optimal conditions based on both individualized and combined responses(at a Fe3+ ion concentration of 0.16 mol/L, a liquid-gas volume ratio of 20.67 L/m3 and a high gravity factor of 87) were found. Under this optimum condition, the desulfurization efficiency could reach 98.81% when the H2 S concentration was 7 g/m3 in APG. In this work, the sulfur product was analyzed by X-ray diffraction(XRD), scanning electron microscopy(SEM) and the energy dispersive X-ray spectrometer(EDX). The results of analysis show that the sulfur is made of the high-purity orthorhombic crystals, which are advantageous to environmental conservation. 展开更多
关键词 hydrogen sulfide chelated iron high gravity technology response surface methodology Box-Behnken design
在线阅读 下载PDF
Dispersion Performance of Methanol-Diesel Emulsified Fuel Prepared by High Gravity Technology 被引量:2
6
作者 Jiao Weizhou Li Jing +4 位作者 Liu Youzhi Zhang Qiaoling Liu Wenli Xu Chengcheng Guo Liang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第1期27-34,共8页
A new continuous process for preparing methanol-diesel emulsified fuel with an Impinging Stream-Rotating Packed Bed is proposed. The droplet size of dispersed phase(methanol) of the emulsified fuel has a significant e... A new continuous process for preparing methanol-diesel emulsified fuel with an Impinging Stream-Rotating Packed Bed is proposed. The droplet size of dispersed phase(methanol) of the emulsified fuel has a significant effect on the combustion of methanol-diesel emulsified fuel. In this paper, the methanol-diesel emulsified fuel uses diesel as the continuous phase and methanol as the dispersed phase. The Sauter mean diameter of the dispersed phase of methanol-diesel emulsified fuel was characterized with microphotography and arithmetic method. The experimental result showed that the Sauter mean diameter of the dispersed phase, which was decreased with the augmentation of the high gravity factor, liquid flow rate and emulsifier dosage, was inversely proportional to the methanol content. The Sauter mean diameter of the dispersed phase can be controlled and adjusted in the range of 12—40 μm through the change of operating conditions. The correlative expressions of the Sauter mean diameter of emulsified fuel were obtained and the calculated values agreed well with the experimental values. 展开更多
关键词 EMULSION methanol-diesel blend impinging stream-rotating packed bed DISPERSION Sauter mean diameter
在线阅读 下载PDF
Diffusion Characteristics and Removal of Cyclohexane in Polyolefin Elastomer Melt 被引量:1
7
作者 Qi Jibing Yang Tong +4 位作者 Liu Yandong Yuan Zhiguo Zhang Qiaoling Liu Youzhi Yi Jianjun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第4期76-85,共10页
The diffusion coefficient of volatiles in polymer solutions is a crucial parameter to describe the mass transfer efficiency and ability of volatiles.In this research,polyolefin elastomer(POE)was used as a polymer,and ... The diffusion coefficient of volatiles in polymer solutions is a crucial parameter to describe the mass transfer efficiency and ability of volatiles.In this research,polyolefin elastomer(POE)was used as a polymer,and cyclohexane was used as a volatile.A gravimetric analysis was applied to measure the diffusion coefficient of cyclohexane in POE.The devolatilization rate of the POE-cyclohexane system under different conditions was measured.The effects of temperature,film sample thickness,and initial concentration of volatiles on the devolatilization rate were discussed.Based on the devolatilization rate data,the average diffusion coefficient of cyclohexane in POE was obtained by fitting with a mathematical model.The experimental results indicate that the devolatilization rate increased with increasing temperature and initial concentration of volatiles,but it decreased with increasing sample thickness.As the thickness increased,the overall diffusion resistance increased.As the temperature increased,the molecular movement increased,resulting in the increase of average diffusion coefficient.The relationship between the diffusion coefficient of the POE-cyclohexane system and temperature follows the Arrhenius law.The diffusion activation energy E=6201.73 J/mol,and the pre-exponential factor of the diffusion coefficient D0=2.64×10^(-10) m^(2)/s.This work can provide basic data for exploring the devolatilization of POE polymers and serves as a useful reference for enhancing the effect of devolatilization. 展开更多
关键词 diffusion coefficient gravimetric analysis polyolefin elastomer(POE) CYCLOHEXANE devolatilization rate
在线阅读 下载PDF
Comparison of Mass Transfer Characteristics between Countercurrent-Flow and Crosscurrent-Flow Rotating Packed Bed 被引量:1
8
作者 Qi Guisheng Guo Linya +1 位作者 Liu Youzhi Zhang Dongming 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2019年第4期103-111,共9页
The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process ... The rotating packed bed(RPB), mainly including the countercurrent-flow RPB(Counter-RPB) and the crosscurrentflow RPB(Cross-RPB) that are classified from the perspective of gas-liquid contact style, is a novel process intensification device. A significant measurement standard for evaluating the performance of RPB is the mass transfer effect. In order to compare the mass transfer characteristics of Counter-RPB and Cross-RPB with the same size, the liquid volumetric mass transfer coefficient(k_La_e) and effective interfacial area(a_e) were measured under identical operating conditions. Meanwhile, the comparison of comprehensive mass transfer performance was conducted using the ratio of ΔP(pressure drop) to kLae as the standard. Experimental results indicated that kLae and ae increased with the increase in liquid spray density q, gas velocity u, and high gravity factor β. Furthermore, compared with the Cross-RPB, the Counter-RPB has higher liquid volumetric mass transfer coefficient and slightly larger effective interfacial area. The experimental results of comprehensive mass transfer performance showed that the Counter-RPB had higher ΔP/k_La_e than the Cross-RPB with changes in liquid spray density and high gravity factor, and there exists a turning point at 0.71 m/s accompanied by a variation with gas velocity. Moreover, the relative error of experimental value to calculated value, which was computed by the correlative expressions of kLae, was less than 5 %. In conclusion, the mass transfer characteristics of RPB are deeply impacted by the manner in which the flows are established and the Cross-RPB would have a great potential for industrial scale-up applications. 展开更多
关键词 rotating packed bed mass transfer crosscurrent-flow countercurrent-flow process intensi fication
在线阅读 下载PDF
Preparation by High-gravity Technology of a Cu/N-TiO_(2) Nanophotocatalyst for Photodegradation of Phenol Wastewater
9
作者 Ren Xueqing Zhang Qiaoling +3 位作者 Zhang Yanfen Qi Guisheng Guo Jing Gao Jing 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期151-161,共11页
TiO_(2) is a promising photocatalyst,but its practical use is restricted by its low catalytic efficiency caused by the large particle size and uneven size distribution,which arise from the limited contact area of the ... TiO_(2) is a promising photocatalyst,but its practical use is restricted by its low catalytic efficiency caused by the large particle size and uneven size distribution,which arise from the limited contact area of the liquid-liquid interface during synthesis.Impinging stream-rotating packed bed(IS-RPB)reactors,which are used for process intensification,overcome the mixing limitation of traditional stirred-tank reactors and provide a micromixing environment at the molecular scale for the two liquid phases,which can reduce the particle size and distribution range.Cu/N-TiO_(2) nanoparticles were prepared in an IS-RPB reactor by the one-step precipitation method using urea as the nitrogen source,titanyl sulfate as the titanium source,copper chloride as the copper source,and ammonium hydroxide as the precipitant.The particle size of the photocatalyst was about 11.40 nm with a narrow size distribution measured by scanning electron microscopy and transmission electron microscopy.X-ray photoelectron spectroscopy showed that N replaced some O and was uniformly dispersed in the TiO_(2) lattice as interstitial and substitutional N.Cu replaced some Ti and was present as Cu^(2+).The synergistic effects of these two elements formed a new impurity energy level and reduced the band gap energy of the TiO_(2) nanoparticles.The specific surface area of the Cu/N-TiO_(2) nanoparticles was 152.97 m^(2)/g.The effects of the main factors on the degradation rate were studied,and the removal efficiency reached 100%under the optimal operating conditions after 2 h ultraviolet irradiation.The electron paramagnetic resonance measurements showed that the superoxide radical played a main role in the degradation process,whereas the photogenerated holes and hydroxyl radicals had weak effects. 展开更多
关键词 Cu/N-TiO_(2) CO-DOPING Impinging stream rotating packed bed photocatalysis PHENOL
在线阅读 下载PDF
Determination of the Henry’s Law Constant of Hexane in High-Viscosity Polymer Systems
10
作者 Qi Jibing Li Yuliang +4 位作者 Liu Youzhi Yang Tong Liu Yandong Yuan Zhiguo Yi Jianjun 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第1期34-43,共10页
The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexan... The Henry’s law constant of volatiles in polymer systems is a crucial parameter reflecting the gas-liquid equilibrium,which is very important for devolatilization.In this research,polyolefin elastomer(POE)-cyclohexane and polydimethylsiloxane(PDMS)-hexane systems were studied,and the Henry’s law constant was obtained by measuring the gas phase equilibrium partial pressure when polymer solutions containing different mass fractions of volatiles reached a saturated state.The effects of temperature,type of volatiles,and polymer viscosity on the gas phase equilibrium partial pressure and Henry’s law constant of the volatiles were investigated.The results indicate that,with the increase of temperature and polymer viscosity,the gas phase equilibrium partial pressure and Henry’s law constant of volatiles increase.As temperature increases,the solubility of gas in liquid decreases.The relationship between the Henry’s law constant and temperature is consistent with the Arrhenius law.In the PDMS-hexane system,the gas phase equilibrium partial pressure and Henry’s law constant of n-hexane are higher than those of cyclohexane.The obtained Henry’s law constants can be used as a reference for perfecting the devolatilization process and improving the devolatilization effect. 展开更多
关键词 Henry’s law constant gas-liquid equilibrium method HEXANE polyolefin elastomer(POE) polydimethylsiloxane(PDMS)
在线阅读 下载PDF
Effects of Coexisting Substances on Nitrobenzene Degradation with O_3/H_2O_2 Process in High-Gravity Fields
11
作者 Zhang Shiguang Qin Yuejiao +3 位作者 Zhang Dongming Jiao Weizhou Guo Liang Liu Youzhi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2016年第4期32-40,共9页
This study used nitrobenzene as the simulated pollutant to study the effects of common inorganic sodium salts and organics on nitrobenzene degradation by O_3/H_2O_2 in high-gravity fields. The experiment results showe... This study used nitrobenzene as the simulated pollutant to study the effects of common inorganic sodium salts and organics on nitrobenzene degradation by O_3/H_2O_2 in high-gravity fields. The experiment results showed that the highgravity technology could increase the nitrobenzene removal rate by improving the ozone transfer efficiency and ozone dissolution. Coexisting substances had different effects on the degradation kinetics of nitrobenzene in high-gravity fields. Among such substances, Na_2CO_3, NaOH, Na_3PO_4, and NaNO_3 accelerated the removal of nitrobenzene. The main action principle of nitrobenzene degradation by O_3/H_2O_2 is that the additives can increase the pH value of the solution, stimulate ozonolysis, generate hydroxyl radicals(·OH), and improve oxidation efficiency. By contrast, NaCl, NaHCO_3, NaHSO_4, ethanol(C_2H_5OH), acetic acid(CH_3COOH), formic acid(HCOOH), and tert-butyl alcohol(TBA) inhibited nitrobenzene removal. When NaHCO_3, CH_3COOH, or HCOOH were added, the pH value of the solution decreased and free radical chain reactions were hindered. However, NaCl, NaHCO_3, C_2H_5OH, and TBA consumed ·OH radicals and inhibited nitrobenzene removal. 展开更多
关键词 wastewater nitrobenzene coexisting substance high gravity ozone hydrogen peroxide
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部