As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical org...As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam.展开更多
A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTF...A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.展开更多
This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of ol...This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of old architecture and public buildings.We carried out penetration experiments in which four clay-fired brick walls employing two different patterns were subjected to impact from small high-speed projectile,i.e.12.7 mm armor-piercing explosive incendiary projectile and material tests in which the static and dynamic compressive strengths of clay-fired brick and mortar were determined by quasi-static and SHPB(Split Hopkinson Pressure Bar)tests.The experimental data include hit and exit velocities,damage configuration of clay brick masonry and mechanical properties of material at low and high strain rates,though which influence of thickness and bonding patterns of wall on kinetic loss of bullet,the damage patterns of masonry observed experimentally and dynamic increase of material strengths are analyzed.To keep minimum boundary inconsistency with reality,full 3D detailed finite element model consisting of two different material is established.Sharing common nodes and employing automatic tiebreak contact are combined to reduce computational time usage of large-scale model.For description of clay-fired brick and mortar RiedeleHiermaiereThoma(RHT)material model is employed.Material parameter set is derived based on experimental data,available literature and engineering assumptions.The numerical simulations study the mesh resolution dependency of material model,reproduce the crucial phenomena of masonry in experiment acceptably and offer more time-resolved insight into motion of bullet in the process of penetration.The feasibility of means of constructing finite element model and applying RHT model to the masonry herein and analogous constructions is explored through numerical investigation.展开更多
Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave i...Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet.展开更多
The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the...The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12072356 and 12232020)the Science and Technology on Transient Impact Laboratory(Grant No.6142606221105)the Beijing Municipal Science and Technology Commission(Grant No.Z221100005822006).
文摘As one of the most widely used personal protective equipment(PPE),body armors play an important role in protecting the human body from the high-velocity impact of bullets or projectiles.The body torso and critical organs of the wear may suffer severe behind-armor blunt trauma(BABT)even though the impactor is stopped by the body armor.A type of novel composite material through incorporating shear stiffening gel(STG)into ethylene-vinyl acetate(EVA)foam is developed and used as buffer layers to reduce BABT.In this paper,the protective performance of body armors composed of fabric bulletproof layers and a buffer layer made of foam material is investigated both experimentally and numerically.The effectiveness of STG-modified EVA in damage relief is verified by ballistic tests.In parallel with the experimental study,numerical simulations are conducted by LS-DYNA®to investigate the dynamic response of each component and capture the key mechanical parameters,which are hardly obtained from field tests.To fully describe the material behavior under the transient impact,the selected constitutive models take the failure and strain rate effect into consideration.A good agreement between the experimental observations and numerical results is achieved to prove the validity of the modelling method.The tests and simulations show that the impact-induced deformation on the human body is significantly reduced by using STG-modified EVA as the buffering material.The improvement of protective performance is attributed to better dynamic properties and more outstanding energy absorption capability of the composite foam.
基金This work was supported by the National Natural Science Foundation of China(No.51571033,11804022)the Science and Technology on Transient Impact Laboratory Foundation(No.6142606183208).
文摘A facile and economical approach was developed for the large-scale production of powdered core-shell structured PTFE/Al (CS-PA) energetic materials through ultrasonic-assisted mixing. The low-cost micrometer-sized PTFE and Al particles were used as starting materials. Under high-power ultrasonic waves, the PTFE powder was dispersed into nano-to sub-micrometer-sized particles and then encapsulated the Al microparticles to form the core-shell structure. The heat of combustion, burning rate, and pressurization rate of the powdered CS-PA were measured. The thermal-initiated reaction behavior was further evaluated using thermogravimetry-differential scanning calorimetry. Subsequently, the bulk CS-PA with a uniform microstructure was obtained via cold isostatic pressing of the powdered CS-PA followed by vacuum sintering. For the bulk CS-PA, the quasi-static compression behavior was characterized, and the impact-initiated reaction processes were conducted using the Split Hopkinson Pressure Bar (SHPB) and evaluated by a high-speed camera. Compared to physically mixed PTFE/Al materials, the powdered and bulk CS-PA demonstrated enhanced thermal- and impact-initiated reaction characteristics respectively, proving the effectiveness of our approach for constructing core-shell structures.
基金The work presented in this paper is funded by Opening Project of Science and Technology on Transient Impact Laboratory(Grant No.614260601010517).
文摘This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of old architecture and public buildings.We carried out penetration experiments in which four clay-fired brick walls employing two different patterns were subjected to impact from small high-speed projectile,i.e.12.7 mm armor-piercing explosive incendiary projectile and material tests in which the static and dynamic compressive strengths of clay-fired brick and mortar were determined by quasi-static and SHPB(Split Hopkinson Pressure Bar)tests.The experimental data include hit and exit velocities,damage configuration of clay brick masonry and mechanical properties of material at low and high strain rates,though which influence of thickness and bonding patterns of wall on kinetic loss of bullet,the damage patterns of masonry observed experimentally and dynamic increase of material strengths are analyzed.To keep minimum boundary inconsistency with reality,full 3D detailed finite element model consisting of two different material is established.Sharing common nodes and employing automatic tiebreak contact are combined to reduce computational time usage of large-scale model.For description of clay-fired brick and mortar RiedeleHiermaiereThoma(RHT)material model is employed.Material parameter set is derived based on experimental data,available literature and engineering assumptions.The numerical simulations study the mesh resolution dependency of material model,reproduce the crucial phenomena of masonry in experiment acceptably and offer more time-resolved insight into motion of bullet in the process of penetration.The feasibility of means of constructing finite element model and applying RHT model to the masonry herein and analogous constructions is explored through numerical investigation.
基金supported by the National Basic Scientific Research Project(Grant NO.JCKYS2019209C001)National Key Research and Development Program of China(Grant NO.2017YFC0822301&Grant NO.2018YFC0807206)National Natural Science Foundation of China(Grant NO.11772303)。
文摘Pressure wave plays an important role in the occurrence of behind armor blunt trauma(BABT),and ballistic gelatin is widely used as a surrogate of biological tissue in the research of BABT.Comparison of pressure wave in the gelatin behind armor for different rifle bullets is lacking.The aim of this study was to observe dynamic changes in pressure wave induced by ballistic blunt impact on the armored gelatin block and to compare the effects of bullet type on the parameters of the transient pressure wave.The gelatin blocks protected with National Institute of Justice(NIJ) class III bulletproof armor were shot by three types of rifle bullet with the same level of impact energy.The transient pressure signals at five locations were recorded with pressure sensors and three parameters(maximum pressure,maximum pressure impulse,and the duration of the first positive phase) were determined and discussed.The results indicated that the waveform and the twin peak of transient pressure wave were not related to the bullet type.However,the values of pressure wave's parameters were significantly affected by bullet type.Additionally,the attenuation of pressure amplitude followed the similar law for the three ammunitions.These findings may be helpful to get some insight in the BABT and improve the structure design of bullet.
基金supported by the National Natural Science Foundation of China(Grant No.11872215)the National Defense Basic Scientific Research program of China(Grant No.JCKYS2019209C001)the Fundamental Strengthening Program of the Military Science and Technology Commission Technical Field Foundation(2020-JCJQ-JJ-403).
文摘The classic metallic Split Hopkinson Pressure Bar(SHPB)cannot capture the transmitted signal accurately when measuring soft biological tissue,because of the very low wave impedance and strength of this material.So the dynamic compressive response of porcine muscle has been investigated by using a modified SHPB.The forces on both ends of the sample measured using Polyvinylidene fluor(PVDF)transducers were applied to calculate the stress in the specimen instead of the strain gauge signal on the transmitted bar.Moreover,a circular cardboard disk pulse shaper was applied for generating a suitable incident pulse to achieve stress equilibrium and constant strain rates in the specimens.Then,the dynamic mechanical properties of porcine muscle parallel and perpendicular to the fiber directions were measured,and the stress equilibrium process during loading was analyzed,as well as the inertia-induced extra stress being corrected.Furthermore,quasi-static tests were conducted at two different strain rates to investigate the strain rate dependence using a universal material testing machine.The results show that the stress-strain curves are sensitive to strain rate in the two different loading directions.The compressive stress perpendicular to the fiber direction is stiffer than that parallel to the fiber direction.In addition,a strain rate-dependent constitutive model was developed based on the mechanical response of the muscle at different strain rates and fitted to the experimental data.The results show that the overall fit is good,and the constitutive model could describe the muscle's dynamic mechanical properties.