The primary objective in aircraft transportation is to minimize turbulent drag, thereby conserving energy and reducing emissions. We propose a sector-shaped counter-flow dielectric barrier discharge plasma actuator, w...The primary objective in aircraft transportation is to minimize turbulent drag, thereby conserving energy and reducing emissions. We propose a sector-shaped counter-flow dielectric barrier discharge plasma actuator, which leverages jet synthesis for drag reduction. A drag control experiment was conducted in a low-speed wind tunnel with a controlled flow velocity of 9.6 m/s(Re = 1.445 × 10^(4)). This study investigated the effects of varying pulse frequencies and actuation voltages on the turbulent boundary layer. Using a hot-wire measurement system, we analyzed the pulsating and time-averaged velocity distributions within the boundary layer to evaluate the streamwise turbulent drag reduction. The results show that the local TDR decreases as the pulse frequency increases, reaching a maximum reduction of approximately 20.97% at a pulse frequency of 50 Hz. In addition, as the actuation voltage increases, the friction coefficient decreases, increasing the drag reduction rate. The maximum drag reduction of approximately 33.34% is achieved at an actuation voltage of 10 kV.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness o...Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.展开更多
In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion cha...In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion chamber at high altitude become a worldwide problem.To solve this problem,a kind of multichannel plasma igniter with round cavity is proposed in this paper,the three-channel and five-channel igniters are compared with the traditional ones.The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test,and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber.The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter,which can increase the conversion efficiency of electric energy from 26%to 43%,and the conversion efficiency of thermal energy from 25%to 73%.The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area,which both increase with the increase of height.At the same height,the inlet flow helps to increase the penetration depth of the spark.The recessed multichannel plasma igniter can widen the lean ignition boundary,and the maximum enrichment percentage of lean ignition boundary can reach 31%.展开更多
The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter functi...The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.展开更多
Dielectric barrier discharge(DBD)plasma actuators are widely used in active flow control due to their simple design and rapid responsiveness.However,they need more effectiveness and discharge extension.To overcome the...Dielectric barrier discharge(DBD)plasma actuators are widely used in active flow control due to their simple design and rapid responsiveness.However,they need more effectiveness and discharge extension.To overcome these limitations,a sector-shaped dielectric barrier discharge(SS-DBD)plasma actuator with an adjustable jet angle was developed to enhance flow control effectiveness.The flow field dynamics induced by the SS-DBD plasma actuator were quantitatively analyzed using particle image velocimetry(PIV).Experimental investigations showed that precise adjustments to the actuation voltage can modulate the maximum velocity of the induced jet.Furthermore,a quasi-linear relationship between the sector-shaped angles of the SS-DBD and the deflected jet angles was established,indicating that changes in the sector-shaped angles directly influence the direction of the deflected jet.This correlation enables precise control over jet angles,significantly enhancing flow control by adjusting the SS-DBD-PA's sector-shaped angle.展开更多
Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distribut...Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.展开更多
The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, a...The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.展开更多
The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode ...The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode distance, and duty cycle on the discharge are studied. When pressure reaches 60 Ton. (1 Torr= 1.33322 x 102 Pa) the transition from diffuse glow mode to constricted mode occurs. With the operating pressure varying from 10 Tort to 60 Torr, the discharge energy calculated from the charge-voltage (Q-V) Lissajous figure decreases rapidly, while it remains unchanged between 60 Torr and 460 Torr. Under certain experimental conditions, there exists an optimized electrode distance (8 mm). As the duty cycle of applied voltage increases, the voltage-current waveforms and Q-V Lissajous figures show no distinct changes.展开更多
For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation i...For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.展开更多
Relighting of jet engines at high altitudes is very difficult because of the high velocity, low pressure, and low tempera- ture of the inlet airflow. Successful ignition needs sufficient ignition energy to generate a ...Relighting of jet engines at high altitudes is very difficult because of the high velocity, low pressure, and low tempera- ture of the inlet airflow. Successful ignition needs sufficient ignition energy to generate a spark kernel to induce a so-called critical flame initiation radius. However, at high altitudes with high-speed inlet airflow, the critical flame initiation radius becomes larger; therefore, traditional ignition technologies such as a semiconductor igniter (SI) become infeasible for use in high-altitude relighting of jet engines. In this study, to generate a large spark kernel to achieve successful ignition with high-speed inlet airflow, a new type of multichannel plasma igniter (MCPI) is proposed. Experiments on the electrical char- acteristics of the MCPI and SI were conducted under normal and sub-atmospheric pressures (P = 10-100 kPa). Ignition experiments for the MCPI and SI with a kerosene/air mixture in a triple-swirler combustor under different velocities of inlet airflow (60-110 m/s), with a temperature of 473 K at standard atmospheric pressure, were investigated. Results show that the MCPI generates much more arc discharge energy than the SI under a constant pressure; for example, the MCPI generated 6.93% and 16.05 % more arc discharge energy than that of the SI at 30 kPa and 50 kPa, respectively. Compared to the SI, the MCPI generates a larger area and height of plasma heating zone, and induces a much larger initial spark kernel. Furthermore, the lean ignition limit of the MCPI and SI decreases with an increase in the velocity of the inlet airflow, and the maximum velocity of inlet airflow where the SI and MCPI can achieve successful and reliable ignition is 88.7 m/s and 102.2 m/s, respectively. Therefore, the MCPI has the advantage of achieving successful ignition with high-speed inlet airflow and extends the average ignition speed boundary of the kerosene/air mixture by 15.2%.展开更多
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig...The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.展开更多
In this paper, aerodynamic actuation characteristics of radio-frequency(RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse ...In this paper, aerodynamic actuation characteristics of radio-frequency(RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse glow discharge can be observed; under the supersonic inflow, the plasma is blown downstream but remains continuous and stable.Time-resolved schlieren is used for flow field visualization. It is found that RF discharge not only leads to continuous energy deposition on the electrode surface but also induces a compression wave. Under the supersonic inflow condition, a weak oblique shock wave is induced by discharge. Experimental results of the shock wave control indicate that the applied actuation can disperse the bottom structure of the ramp-induced oblique shock wave, which is also observed in the extracted shock wave structure after image processing. More importantly, this control effect can be maintained steadily due to the continuous high-frequency(MHz) discharge. Finally, correlations for schlieren images and numerical simulations are employed to further explore the flow control mechanism. It is observed that the vortex in the boundary layer increases after the application of actuation, meaning that the boundary layer in the downstream of the actuation position is thickened. This is equivalent to covering a layer of low-density smooth wall around the compression corner and on the ramp surface, thereby weakening the compressibility at the compression corner. Our results demonstrate the ability of RF plasma aerodynamic actuation to control the supersonic airflow.展开更多
Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operat...Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge-Voltage (Q-V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage-current waveforms, the area of Q-V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains . peak peak unchanged when load power is between 40 W and 95 W. The relative intensity Ipeak 91.4/Ipeak380.5 changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the Ipeak371.1/Ipeak380.5 relative intensity Ipeak91.4/Ipeak380.5 rises evidently Additionally, the relative intensity Ipeak91.4/Ipeak380.5 is insensitive to the pressure, the duty cycle, and the load power.展开更多
We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current(DC)voltage.The discharge tests show that sliding discharge and...We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current(DC)voltage.The discharge tests show that sliding discharge and extended discharge are filamentary discharge.The irregular current pulse of sliding discharge fluctuates obviously in the first half cycle,ultimately expands the discharge channel.The instantaneous power and average power consumptions of sliding discharge are larger than those of the extended discharge and dielectric barrier discharge(DBD).The flow characteristics measured by a high-frequency particle-image-velocimetry system together with high-speed schlieren technology show that the opposite jet at the bias DC electrode is induced by sliding discharge,which causes a bulge structure in the discharge channel.The bias DC electrode can deflect the direction of the induced jet,then modifying the properties of the boundary layer.Extended discharge can accelerate the velocity of the starting vortex,improving the horizontal velocity profile by 203%.The momentum growth caused by extended discharge has the largest peak value and the fastest growth rate,compared with sliding discharge and DBD.However,the momentum growth of sliding discharge lasts longer in the whole pulsed cycle,indicating that sliding discharge can also inject more momentum.展开更多
The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and...The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity.展开更多
The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its ap...The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control.展开更多
The shockwave induced by surface direct-current (DC) arc discharge is investigated both experimentally and numer- ically. In the experiment, the shockwave generated by rapid gas heating is clearly observed from Schl...The shockwave induced by surface direct-current (DC) arc discharge is investigated both experimentally and numer- ically. In the experiment, the shockwave generated by rapid gas heating is clearly observed from Schlieren images. The peak velocity of the shockwave is measured to be over 410 m/s; during its upright movement, it gradually falls to about 340 m/s; no remarkable difference is seen after changing the discharge voltage and the pulse frequency. In the modeling of the arc plasma, the arc domain is not simulated as a boundary condition with fixed temperature or pressure, but a source term with a time-varying input power density, which could better reflect the influence of the heating process. It is found that with a reference power density of 2.8× 1012 W/m2, the calculated peak velocity is higher than the measured one, but they quickly (in 30 Its) become agreed with each other. The peak velocity also rises while increasing the power density, the maximum velocity acquired in the simulation is over 468 m/s, which is expected to be effective for high speed flow control.展开更多
An experimental investigation on airfoil (NACA64-215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma -= 2). The results of schlieren and pressure measurement show that when p...An experimental investigation on airfoil (NACA64-215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma -= 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.展开更多
Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond...Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61971345 and 52107174)。
文摘The primary objective in aircraft transportation is to minimize turbulent drag, thereby conserving energy and reducing emissions. We propose a sector-shaped counter-flow dielectric barrier discharge plasma actuator, which leverages jet synthesis for drag reduction. A drag control experiment was conducted in a low-speed wind tunnel with a controlled flow velocity of 9.6 m/s(Re = 1.445 × 10^(4)). This study investigated the effects of varying pulse frequencies and actuation voltages on the turbulent boundary layer. Using a hot-wire measurement system, we analyzed the pulsating and time-averaged velocity distributions within the boundary layer to evaluate the streamwise turbulent drag reduction. The results show that the local TDR decreases as the pulse frequency increases, reaching a maximum reduction of approximately 20.97% at a pulse frequency of 50 Hz. In addition, as the actuation voltage increases, the friction coefficient decreases, increasing the drag reduction rate. The maximum drag reduction of approximately 33.34% is achieved at an actuation voltage of 10 kV.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51336011 and 51607188)the China Postdoctoral Science Foundation(Grant No.2014M562446)the PhD Research Startup Foundation of Xi’an University of Technology(Grant No.256081802)
文摘Plasma flow control(PFC) is a promising active flow control method with its unique advantages including the absence of moving components, fast response, easy implementation, and stable operation. The effectiveness of plasma flow control by microsecond dielectric barrier discharge(μs-DBD), and by nanosecond dielectric barrier discharge(NS-DBD) are compared through the wind tunnel tests, showing a similar performance between μs-DBD and NS-DBD. Furthermore, theμs-DBD is implemented on an unmanned aerial vehicle(UAV), which is a scaled model of a newly developed amphibious plane. The wingspan of the model is 2.87 m, and the airspeed is no less than 30 m/s. The flight data, static pressure data,and Tufts images are recorded and analyzed in detail. Results of the flight test show that the μs-DBD works well on board without affecting the normal operation of the UAV model. When the actuators are turned on, the stall angle and maximum lift coefficient can be improved by 1.3° and 10.4%, and the static pressure at the leading edge of the wing can be reduced effectively in a proper range of angle of attack, which shows the ability of μs-DBD to act as plasma slats. The rolling moment produced by left-side μs-DBD actuation is greater than that produced by the maximum deflection of ailerons,which indicates the potential of μs-DBD to act as plasma ailerons. The results verify the feasibility and efficacy of μs-DBD plasma flow control in a real flight and lay the foundation for the full-sized airplane application.
基金National Natural Science Foundation of China(Grant No.91641204).
文摘In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion chamber at high altitude become a worldwide problem.To solve this problem,a kind of multichannel plasma igniter with round cavity is proposed in this paper,the three-channel and five-channel igniters are compared with the traditional ones.The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test,and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber.The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter,which can increase the conversion efficiency of electric energy from 26%to 43%,and the conversion efficiency of thermal energy from 25%to 73%.The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area,which both increase with the increase of height.At the same height,the inlet flow helps to increase the penetration depth of the spark.The recessed multichannel plasma igniter can widen the lean ignition boundary,and the maximum enrichment percentage of lean ignition boundary can reach 31%.
基金supported by National Natural Science Foundation of China(No.11405271)
文摘The effect of the radial density configuration in terms of width, edge gradient and volume gradient on the wave field and energy flow in an axially uniform helicon plasma is studied in detail. A three-parameter function is employed to describe the density, covering uniform,parabolic, linear and Gaussian profiles. It finds that the fraction of power deposition near the plasma edge increases with density width and edge gradient, and decays in exponential and "bumpon-tail" profiles, respectively, away from the surface. The existence of a positive second-order derivative in the volume density configuration promotes the power deposition near the plasma core, which to our best knowledge has not been pointed out before. The transverse structures of wave field and current density remain almost the same during the variation of density width and gradient, confirming the robustness of the m=1 mode observed previously. However, the structure of the electric wave field changes significantly from a uniform density configuration, for which the coupling between the Trivelpiece-Gould(TG) mode and the helicon mode is very strong, to non-uniform ones. The energy flow in the cross section of helicon plasma is presented for the first time, and behaves sensitive to the density width and edge gradient but insensitive to the volume gradient. Interestingly, the radial distribution of power deposition resembles the radial profile of the axial component of current density, suggesting the control of the power deposition profile in the experiment by particularly designing the antenna geometry to excite a required axial current distribution.
基金supported by National Natural Science Foundation of China(Nos.61971345 and 52107174)。
文摘Dielectric barrier discharge(DBD)plasma actuators are widely used in active flow control due to their simple design and rapid responsiveness.However,they need more effectiveness and discharge extension.To overcome these limitations,a sector-shaped dielectric barrier discharge(SS-DBD)plasma actuator with an adjustable jet angle was developed to enhance flow control effectiveness.The flow field dynamics induced by the SS-DBD plasma actuator were quantitatively analyzed using particle image velocimetry(PIV).Experimental investigations showed that precise adjustments to the actuation voltage can modulate the maximum velocity of the induced jet.Furthermore,a quasi-linear relationship between the sector-shaped angles of the SS-DBD and the deflected jet angles was established,indicating that changes in the sector-shaped angles directly influence the direction of the deflected jet.This correlation enables precise control over jet angles,significantly enhancing flow control by adjusting the SS-DBD-PA's sector-shaped angle.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘Thermal and induced flow velocity characteristics of radio frequency(RF) surface dielectric barrier discharge(SDBD)plasma actuation are experimentally investigated in this paper. The spatial and temporal distributions of the dielectric surface temperature are measured with the infrared thermography at atmospheric pressure. In the spanwise direction, the highest dielectric surface temperature is acquired at the center of the high voltage electrode, while it reduces gradually along the chordwise direction. The maximum temperature of the dielectric surface raises rapidly once discharge begins.After several seconds(typically 100 s), the temperature reaches equilibrium among the actuator's surface, plasma, and surrounding air. The maximum dielectric surface temperature is higher than that powered by an AC power supply in dozens of k Hz. Influences of the duty cycle and the input frequency on the thermal characteristics are analyzed. When the duty cycle increases, the maximum dielectric surface temperature increases linearly. However, the maximum dielectric surface temperature increases nonlinearly when the input frequency varies from 0.47 MHz to 1.61 MHz. The induced flow velocity of the RF SDBD actuator is 0.25 m/s.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51336011,and 51407197)
文摘The electric and plasma characteristics of RF discharge plasma actuation under varying pressure have been inves- tigated experimentally. As the pressure increases, the shapes of charge-voltage Lissajous curves vary, and the discharge energy increases. The emission spectra show significant difference as the pressure varies. When the pressure is 1000 Pa, the electron temperature is estimated to be 4.139 eV, the electron density and the vibrational temperature of plasma are /peak /lPeak which describes the electron temper- 4.71 x 10^11 cm-3 and 1.27 eV, respectively. The ratio of spectral lines "391.4/'380.5 ature hardly changes when the pressure varies between 5000-30000 Pa, while it increases remarkably with the pressure below 5000 Pa, indicating a transition from filamentary discharge to glow discharge. The characteristics of emission spec- trum are obviously influenced by the loading power. With more loading power, both of the illumination and emission spectrum intensity increase at 10000 Pa. The pin-pin electrode RF discharge is arc-like at power higher than 33 W, which results in a macroscopic air temperature increase.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘The electrical and thermal characterization of near-surface electrical discharge plasma driven by radio frequency voltage are investigated experimentally in this paper. The influences of operating pressure, electrode distance, and duty cycle on the discharge are studied. When pressure reaches 60 Ton. (1 Torr= 1.33322 x 102 Pa) the transition from diffuse glow mode to constricted mode occurs. With the operating pressure varying from 10 Tort to 60 Torr, the discharge energy calculated from the charge-voltage (Q-V) Lissajous figure decreases rapidly, while it remains unchanged between 60 Torr and 460 Torr. Under certain experimental conditions, there exists an optimized electrode distance (8 mm). As the duty cycle of applied voltage increases, the voltage-current waveforms and Q-V Lissajous figures show no distinct changes.
基金supported by National Natural Science Foundation of China(Nos.51276197,51207169)
文摘For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91541120,11472306,51336011,and 91641204)
文摘Relighting of jet engines at high altitudes is very difficult because of the high velocity, low pressure, and low tempera- ture of the inlet airflow. Successful ignition needs sufficient ignition energy to generate a spark kernel to induce a so-called critical flame initiation radius. However, at high altitudes with high-speed inlet airflow, the critical flame initiation radius becomes larger; therefore, traditional ignition technologies such as a semiconductor igniter (SI) become infeasible for use in high-altitude relighting of jet engines. In this study, to generate a large spark kernel to achieve successful ignition with high-speed inlet airflow, a new type of multichannel plasma igniter (MCPI) is proposed. Experiments on the electrical char- acteristics of the MCPI and SI were conducted under normal and sub-atmospheric pressures (P = 10-100 kPa). Ignition experiments for the MCPI and SI with a kerosene/air mixture in a triple-swirler combustor under different velocities of inlet airflow (60-110 m/s), with a temperature of 473 K at standard atmospheric pressure, were investigated. Results show that the MCPI generates much more arc discharge energy than the SI under a constant pressure; for example, the MCPI generated 6.93% and 16.05 % more arc discharge energy than that of the SI at 30 kPa and 50 kPa, respectively. Compared to the SI, the MCPI generates a larger area and height of plasma heating zone, and induces a much larger initial spark kernel. Furthermore, the lean ignition limit of the MCPI and SI decreases with an increase in the velocity of the inlet airflow, and the maximum velocity of inlet airflow where the SI and MCPI can achieve successful and reliable ignition is 88.7 m/s and 102.2 m/s, respectively. Therefore, the MCPI has the advantage of achieving successful ignition with high-speed inlet airflow and extends the average ignition speed boundary of the kerosene/air mixture by 15.2%.
基金National Natural Science Foundation of China(No.61971345)the Foundation for Key Laboratories of National Defense Science and Technology of China(No.614220120030810).
文摘The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11472306,51407197,and 51507187)
文摘In this paper, aerodynamic actuation characteristics of radio-frequency(RF) discharge plasma are studied and a method is proposed for shock wave control based on RF discharge. Under the static condition, a RF diffuse glow discharge can be observed; under the supersonic inflow, the plasma is blown downstream but remains continuous and stable.Time-resolved schlieren is used for flow field visualization. It is found that RF discharge not only leads to continuous energy deposition on the electrode surface but also induces a compression wave. Under the supersonic inflow condition, a weak oblique shock wave is induced by discharge. Experimental results of the shock wave control indicate that the applied actuation can disperse the bottom structure of the ramp-induced oblique shock wave, which is also observed in the extracted shock wave structure after image processing. More importantly, this control effect can be maintained steadily due to the continuous high-frequency(MHz) discharge. Finally, correlations for schlieren images and numerical simulations are employed to further explore the flow control mechanism. It is observed that the vortex in the boundary layer increases after the application of actuation, meaning that the boundary layer in the downstream of the actuation position is thickened. This is equivalent to covering a layer of low-density smooth wall around the compression corner and on the ramp surface, thereby weakening the compressibility at the compression corner. Our results demonstrate the ability of RF plasma aerodynamic actuation to control the supersonic airflow.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472306,51276197,and 51336011)
文摘Electrical characteristics and optical emission spectrum of the radio frequency (RF) surface dielectric barrier discharge (SDBD) plasma actuation are investigated experimentally in this paper. Influences of operating pressure, duty cycle and load power on the discharge are analyzed. When the operating pressure reaches 30 kPa, the discharge energy calculated from the Charge-Voltage (Q-V) Lissajous figure increases significantly, while the effective capacitance decreases remarkably. As the duty cycle of the applied voltage increases, the voltage-current waveforms, the area of Q-V loop and the capacity show no distinct changes. Below 40 W, effective capacitance increases with the increase of load power, but it almost remains . peak peak unchanged when load power is between 40 W and 95 W. The relative intensity Ipeak 91.4/Ipeak380.5 changes little as the operating pressure varies from 4 kPa to 100 kPa, while it rises evidently with the pressure below 4 kPa, which indicates that the RF discharge mode shifts from filamentary discharge to glow discharge at around 4 kPa. With the increase of load power, the Ipeak371.1/Ipeak380.5 relative intensity Ipeak91.4/Ipeak380.5 rises evidently Additionally, the relative intensity Ipeak91.4/Ipeak380.5 is insensitive to the pressure, the duty cycle, and the load power.
基金National Natural Science Foundation of China(Grant Nos.51607188,51790511,and 51906254)the Foundation for Key Laboratories of National Defense Science and Technology of China(Grant No.614220202011801).
文摘We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current(DC)voltage.The discharge tests show that sliding discharge and extended discharge are filamentary discharge.The irregular current pulse of sliding discharge fluctuates obviously in the first half cycle,ultimately expands the discharge channel.The instantaneous power and average power consumptions of sliding discharge are larger than those of the extended discharge and dielectric barrier discharge(DBD).The flow characteristics measured by a high-frequency particle-image-velocimetry system together with high-speed schlieren technology show that the opposite jet at the bias DC electrode is induced by sliding discharge,which causes a bulge structure in the discharge channel.The bias DC electrode can deflect the direction of the induced jet,then modifying the properties of the boundary layer.Extended discharge can accelerate the velocity of the starting vortex,improving the horizontal velocity profile by 203%.The momentum growth caused by extended discharge has the largest peak value and the fastest growth rate,compared with sliding discharge and DBD.However,the momentum growth of sliding discharge lasts longer in the whole pulsed cycle,indicating that sliding discharge can also inject more momentum.
基金National Science and Technology Major Project (No.J2019-Ⅱ-0014-0035)Academician Workstation Foundation of the Green Aerotechnics Research Institute of Chonging Jiaotong University (No. GATRI2020C06003)。
文摘The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity.
基金supported by National Natural Science Foundation of China(Nos.51207169,51276197)
文摘The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control.
基金Project supported by the Key Program of the National Natural Science Foundation of China(Grant No.51336011)the National Natural Science Foundation of China(Grant Nos.51207169 and 51276197)
文摘The shockwave induced by surface direct-current (DC) arc discharge is investigated both experimentally and numer- ically. In the experiment, the shockwave generated by rapid gas heating is clearly observed from Schlieren images. The peak velocity of the shockwave is measured to be over 410 m/s; during its upright movement, it gradually falls to about 340 m/s; no remarkable difference is seen after changing the discharge voltage and the pulse frequency. In the modeling of the arc plasma, the arc domain is not simulated as a boundary condition with fixed temperature or pressure, but a source term with a time-varying input power density, which could better reflect the influence of the heating process. It is found that with a reference power density of 2.8× 1012 W/m2, the calculated peak velocity is higher than the measured one, but they quickly (in 30 Its) become agreed with each other. The peak velocity also rises while increasing the power density, the maximum velocity acquired in the simulation is over 468 m/s, which is expected to be effective for high speed flow control.
基金supported by National Natural Science Foundation of China(Nos.51336011,51276197,51207169)
文摘An experimental investigation on airfoil (NACA64-215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma -= 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation.
基金supported by National Natural Science Foundation of China(Nos.51276197,51207169 and 51336011)
文摘Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack.