Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of ...Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products,thus attracting great attention.In this work,we designed a new FeNiBCuSi formulation with a novel atomic ratio,and the microstructure evolution and magnetic softness were investigated.Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element,favoring the different nucleation and growth processes ofα-Fe nanocrystals.Furthermore,microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation.The defect,with a long relaxation time in relaxation spectra,was more likely to induce the formation of crystal nuclei that ultimately evolved into theα-Fe nanocrystals.As a result,Fe_(84)Ni_(2)B_(12.5)Cu_(1)Si_(0.5)alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness,including a high B_(s)of 1.79 T and very low H_(c)of 2.8 A/m.Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness.展开更多
The spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode active materials(CAMs)are considered a promising alternative to commercially available cathodes such as layered and polyanion oxide cathodes,primarily due to their notab...The spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode active materials(CAMs)are considered a promising alternative to commercially available cathodes such as layered and polyanion oxide cathodes,primarily due to their notable safety and high energy density,particularly in their single-crystal type.Nevertheless,the industrial application of the LNMO CAMs is severely inhibited due to the interfacial deterioration and corrosion under proton-rich and high-voltage conditions.This study successfully designed and synthesized two typical types of crystal facets-exposed single-crystal LNMO CAMs.By tracking the electrochemical deterioration and chemical corrosion evolution,this study elucidates the surface degradation mechanisms and intrinsic instability of the LNMO,contingent upon their crystal facets.The(111)facet,due to its elevated surface energy,is found to be more susceptible to external attack compared to the(100)and(110)facets.Our study highlights the electrochemical corrosion stability of crystal plane engineering for spinel LNMO CAMs.展开更多
Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorit...Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments,adsorption tests,contact angle measurements,Zeta potential detection,FT-IR measurements,and XPS analyses.The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of less than 30%,but the floatability of specularite remains high with recovery rate of 81.77%at pH 10.The artificial mixed mineral flotation results confirmed the effectiveness of taurine as a depressant.Surface adsorption,contact angle,and Zeta potential detection revealed taurine primarily adsorbs on the chlorite surface,which hampered the DDA’s subsequent adsorption and results in the chlorite’s poor floatability.The FT-IR spectra and XPS analyses provided further proof that taurine adsorbed on chlorite surface as an electron donor,and part of the electrons transferred from the sulfonic acid group of taurine to metal ions during the adsorption process.In addition,the hydrogen bond between amino-group of taurine and O ions in chlorite surface was also formed in the adsorption process.Finally,optimized adsorption configurations of taurine on chlorite surfaces were proposed.展开更多
Lithium-sulfur batteries suffer from poor cycling stability because of the intrinsic shuttling effect of intermediate polysulfides and sluggish reaction kinetics,especially at high rates and high sulfur loading.Herein...Lithium-sulfur batteries suffer from poor cycling stability because of the intrinsic shuttling effect of intermediate polysulfides and sluggish reaction kinetics,especially at high rates and high sulfur loading.Herein,we report the construction of a CoP-CO_(2)N@N-doped carbon polyhedron uniformly anchored on three-dimensional carbon nanotubes/graphene(CoP-CO_(2)N@NC/CG)scaffold as a sulfur reservoir to achieve the trapping-diffusion-conversion of polysulfides.Highly active CoP-CO_(2)N shows marvelous catalytic effects by effectively accelerating the reduction of sulfur and the oxidation of Li_(2)S during the discharging and charging process,respectively,while the conductive NC/CG network with massive mesoporous channels ensures fast and continuous long-distance electron/ion transportation.DFT calculations demonstrate that the CoP-CO_(2)N with excellent intrinsic conductivity serves as job-synergistic immobilizing-conversion sites for polysulfides through the formation of P…Li/N…Li and Co…S bonds.As a result,the S@CoP-CO_(2)N@NC/CG cathode(sulfur content 1.7 mg cm^(-2))exhibits a high capacity of988 mAh g^(-1)at 2 C after 500 cycles,which is superior to most of the electrochemical performance reported.Even under high sulfur content(4.3 mg cm^(-2)),it also shows excellent cyclability with high capacity at 1 C.展开更多
Molybdenum trioxide(MoO_(3))has recently attracted wide attention as a typical conversion-type anode of Li-ion batteries(LIBs).Nevertheless,the inferior intrinsic conductivity and rapid capacity fading during charge/d...Molybdenum trioxide(MoO_(3))has recently attracted wide attention as a typical conversion-type anode of Li-ion batteries(LIBs).Nevertheless,the inferior intrinsic conductivity and rapid capacity fading during charge/discharge process seriously limit large-scale commercial application of MoO_(3).Herein,the density function theory(DFT)calculations show that electron-proton co-doping preferentially bonds symmetric oxygen to form unstable HxMoO_(3).When the-OH-group in HxMoO_(3) is released into the solution in the form of H_(2)O,it is going to form MoO_(3-x)with lower binding energy.By the means of both electron-proton co-doping and high-energy nanosizing,oxygen vacancies and nanoflower structure are introduced into MoO_(3) to accelerate the ion and electronic diffusion/transport kinetics.Benefitting from the promotion of ion diffusion kinetics related to nanostructures,as well as both the augmentation of active sites and the improvement of electrical conductivity induced by oxygen vacancies,the MoO_(3-x)/nanoflower structures show excellent lithium-ion storage performance.The prepared specimen has a high lithium-ion storage capacity of 1261 mA h g^(-1)at 0.1 A g^(-1)and cyclic stability(450 cycle),remarkably higher than those of previously reported MoO_(3)-based anode materials.展开更多
The development of wearable electronic systems has generated increasing demand for flexible power sources.Alkaline zinc(Zn)-based batteries,as one of the most mature energy storage technologies,have been considered as...The development of wearable electronic systems has generated increasing demand for flexible power sources.Alkaline zinc(Zn)-based batteries,as one of the most mature energy storage technologies,have been considered as a promising power source owing to their exceptional safety,low costs,and outstanding electrochemical performance.However,the conventional alkaline Zn-based battery systems face many challenges associated with electrodes and electrolytes,causing low capacity,poor cycle life,and inferior mechanical performance.Recent advances in materials and structure design have enabled the revisitation of the alkaline Zn-based battery technology for applications in flexible electronics.Herein,we summarize the up-to-date works in flexible alkaline Zn-based batteries and analyze the strategies employed to improve battery performance.Firstly,we introduce the three most reported cathode materials(including Ag-based,Ni-based,and Co-based materials)for flexible alkaline Zn-based batteries.Then,challenges and modifications in battery anodes are investigated.Thirdly,the recently advanced gel electrolytes are introduced from their properties,functions as well as advanced fabrications.Finally,recent works and the advantages of sandwich-type,fiber-type and thin film-type flexible batteries are summarized and compared.This review provides insights and guidance for the design of high-performance flexible Zn-based batteries for next-generation electronics.展开更多
基金Project supported by the Anhui Provincial Natural Science Foundation(Grant No.2208085QE121)the Key Research&Development Plan of Anhui Province(Grant No.2022a05020016)+1 种基金the University Natural Science Research Project of Anhui Province(Grant No.2023AH051084)the National Natural Science Foundation of China(Grant No.52071078)。
文摘Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products,thus attracting great attention.In this work,we designed a new FeNiBCuSi formulation with a novel atomic ratio,and the microstructure evolution and magnetic softness were investigated.Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element,favoring the different nucleation and growth processes ofα-Fe nanocrystals.Furthermore,microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation.The defect,with a long relaxation time in relaxation spectra,was more likely to induce the formation of crystal nuclei that ultimately evolved into theα-Fe nanocrystals.As a result,Fe_(84)Ni_(2)B_(12.5)Cu_(1)Si_(0.5)alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness,including a high B_(s)of 1.79 T and very low H_(c)of 2.8 A/m.Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness.
基金supported by the National Natural Science Foundation of China (52374311)the National Natural Science Foundation of Shaanxi (2022KXJ-146)+3 种基金the Fundamental Research Funds for the Central Universities (D5000230091)Open project of Shaanxi Laboratory of Aerospace Power (2022ZY2-JCYJ-01-09)full-depth-sea battery project (No.2020-XXXX-XX-246-00)the Youth Innovation Team of Shaanxi Universities。
文摘The spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode active materials(CAMs)are considered a promising alternative to commercially available cathodes such as layered and polyanion oxide cathodes,primarily due to their notable safety and high energy density,particularly in their single-crystal type.Nevertheless,the industrial application of the LNMO CAMs is severely inhibited due to the interfacial deterioration and corrosion under proton-rich and high-voltage conditions.This study successfully designed and synthesized two typical types of crystal facets-exposed single-crystal LNMO CAMs.By tracking the electrochemical deterioration and chemical corrosion evolution,this study elucidates the surface degradation mechanisms and intrinsic instability of the LNMO,contingent upon their crystal facets.The(111)facet,due to its elevated surface energy,is found to be more susceptible to external attack compared to the(100)and(110)facets.Our study highlights the electrochemical corrosion stability of crystal plane engineering for spinel LNMO CAMs.
基金This work was supported by the National Natural Science of China(51904001)Anhui Provincial Natural Science(2008085QE223)China Postdoctoral Science(2020M673590XB).
文摘Chlorite,as the most representative gangue mineral associated with specularite,of which the separation of these two minerals is difficult.This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments,adsorption tests,contact angle measurements,Zeta potential detection,FT-IR measurements,and XPS analyses.The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of less than 30%,but the floatability of specularite remains high with recovery rate of 81.77%at pH 10.The artificial mixed mineral flotation results confirmed the effectiveness of taurine as a depressant.Surface adsorption,contact angle,and Zeta potential detection revealed taurine primarily adsorbs on the chlorite surface,which hampered the DDA’s subsequent adsorption and results in the chlorite’s poor floatability.The FT-IR spectra and XPS analyses provided further proof that taurine adsorbed on chlorite surface as an electron donor,and part of the electrons transferred from the sulfonic acid group of taurine to metal ions during the adsorption process.In addition,the hydrogen bond between amino-group of taurine and O ions in chlorite surface was also formed in the adsorption process.Finally,optimized adsorption configurations of taurine on chlorite surfaces were proposed.
基金supported by the National Natural Science Foundation of China(21903051 and 22073061))the award of Future Fellowship from the Australian Research Council(FT170100224)。
文摘Lithium-sulfur batteries suffer from poor cycling stability because of the intrinsic shuttling effect of intermediate polysulfides and sluggish reaction kinetics,especially at high rates and high sulfur loading.Herein,we report the construction of a CoP-CO_(2)N@N-doped carbon polyhedron uniformly anchored on three-dimensional carbon nanotubes/graphene(CoP-CO_(2)N@NC/CG)scaffold as a sulfur reservoir to achieve the trapping-diffusion-conversion of polysulfides.Highly active CoP-CO_(2)N shows marvelous catalytic effects by effectively accelerating the reduction of sulfur and the oxidation of Li_(2)S during the discharging and charging process,respectively,while the conductive NC/CG network with massive mesoporous channels ensures fast and continuous long-distance electron/ion transportation.DFT calculations demonstrate that the CoP-CO_(2)N with excellent intrinsic conductivity serves as job-synergistic immobilizing-conversion sites for polysulfides through the formation of P…Li/N…Li and Co…S bonds.As a result,the S@CoP-CO_(2)N@NC/CG cathode(sulfur content 1.7 mg cm^(-2))exhibits a high capacity of988 mAh g^(-1)at 2 C after 500 cycles,which is superior to most of the electrochemical performance reported.Even under high sulfur content(4.3 mg cm^(-2)),it also shows excellent cyclability with high capacity at 1 C.
基金financially supported by the National Natural Science Foundation of China(Key Program: 52034011,51974219General Program: 51974219)。
文摘Molybdenum trioxide(MoO_(3))has recently attracted wide attention as a typical conversion-type anode of Li-ion batteries(LIBs).Nevertheless,the inferior intrinsic conductivity and rapid capacity fading during charge/discharge process seriously limit large-scale commercial application of MoO_(3).Herein,the density function theory(DFT)calculations show that electron-proton co-doping preferentially bonds symmetric oxygen to form unstable HxMoO_(3).When the-OH-group in HxMoO_(3) is released into the solution in the form of H_(2)O,it is going to form MoO_(3-x)with lower binding energy.By the means of both electron-proton co-doping and high-energy nanosizing,oxygen vacancies and nanoflower structure are introduced into MoO_(3) to accelerate the ion and electronic diffusion/transport kinetics.Benefitting from the promotion of ion diffusion kinetics related to nanostructures,as well as both the augmentation of active sites and the improvement of electrical conductivity induced by oxygen vacancies,the MoO_(3-x)/nanoflower structures show excellent lithium-ion storage performance.The prepared specimen has a high lithium-ion storage capacity of 1261 mA h g^(-1)at 0.1 A g^(-1)and cyclic stability(450 cycle),remarkably higher than those of previously reported MoO_(3)-based anode materials.
基金financial support from the Australian Research Council(LP1900113)。
文摘The development of wearable electronic systems has generated increasing demand for flexible power sources.Alkaline zinc(Zn)-based batteries,as one of the most mature energy storage technologies,have been considered as a promising power source owing to their exceptional safety,low costs,and outstanding electrochemical performance.However,the conventional alkaline Zn-based battery systems face many challenges associated with electrodes and electrolytes,causing low capacity,poor cycle life,and inferior mechanical performance.Recent advances in materials and structure design have enabled the revisitation of the alkaline Zn-based battery technology for applications in flexible electronics.Herein,we summarize the up-to-date works in flexible alkaline Zn-based batteries and analyze the strategies employed to improve battery performance.Firstly,we introduce the three most reported cathode materials(including Ag-based,Ni-based,and Co-based materials)for flexible alkaline Zn-based batteries.Then,challenges and modifications in battery anodes are investigated.Thirdly,the recently advanced gel electrolytes are introduced from their properties,functions as well as advanced fabrications.Finally,recent works and the advantages of sandwich-type,fiber-type and thin film-type flexible batteries are summarized and compared.This review provides insights and guidance for the design of high-performance flexible Zn-based batteries for next-generation electronics.