Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address the...Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field.展开更多
For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantag...For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.展开更多
Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperature...Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.展开更多
A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d...A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.展开更多
For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequenti...For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.展开更多
Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polyme...Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.展开更多
Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It...Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.展开更多
In the present work,uniaxial compressive tests were carried out on limestone-like samples containing two parallel open fissures or cement-infilled fissures with different geometries.Mechanical property and crack behav...In the present work,uniaxial compressive tests were carried out on limestone-like samples containing two parallel open fissures or cement-infilled fissures with different geometries.Mechanical property and crack behavior of limestone-like samples with two parallel open fissures or cement-infilled fissures were affected by bridge inclination angle and fissure inclination angle.Four types of coalescence of rock bridge for samples containing open fissures or cement-infilled fissures were summarized and classified.The closure of tensile crack was observed in the samples with small fissure inclination angle.This is a new phenomenon which is not mentioned in previous studies.Test results show that the peak strength,crack initiation stress,and coalescence type are different between open fissures and cement infilled fissures.The reason for this phenomenon is that grouting of cement can transfer stress and reduce stress concentration at the flaw tip and rock bridge area.展开更多
As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the charact...As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.展开更多
Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroug...Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroughly explore the mineralogy and developmental features of shale of the Lower Silurian Longmaxi Formation in the study area. The results show that,the Lower Silurian Longmaxi Shale(SLS) in the southeastern margin of Sichuan Basin, China, is primarily characterized by a high content of brittle minerals and a relatively low content of clay minerals. The total content of brittle minerals is approximately 57%,including 27% quartz, 12.2% feldspar, 11.2% carbonate and 2.4% pyrite. The total content of clay minerals reaches 41.6%,composed of illite(23.8%), mixed-layer of illite and smectite(I/S)(10.8%) and chlorite(7.0%). The SLS accommodates the widespread development of various types of fractures, including tectonic fractures, diagenetic fractures, inter-layer fractures and slip fractures. The developmental level of the fracture in the SLS is mainly influenced by faults, lithology, mineral contents and total organic carbon content(TOC) in study area.展开更多
Nanoqueous phase liquid(NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface,but the testing of its feasibility under water table ...Nanoqueous phase liquid(NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface,but the testing of its feasibility under water table fluctuation has received insufficient attention.The feature in a column test was tested through two cycles of water table fluctuation.The sandy medium in the column was initially saturated,and each cycle of water table fluctuation consisted of one water table falling and one rising,resulting in a drainage and an imbibition of the medium,respectively.It was found that the difference between the simulated and measured results in the first drainage of the column test was minor.However,with the propagation of the water table fluctuations,the simulation errors increased,and the simulation accuracy was not acceptable except for the first drainage in the two fluctuation cycles.The main reason was proved to be the estimation method of residual saturation used in this simulator.Also,based on the column tests,it was assumed that the resulting residual saturation from an incomplete imbibition process was a constant,with a value equal to that of the residual value resulting from the main imbibition process.The results obtained after modifying NAPL simulator with this assumption were found to be more accurate in the first cycle of water table fluctuation,but this accuracy decreased rapidly in the second one.It is concluded that NAPL simulator is not adequate in the case of LNAPL migration under water table fluctuation in sandy medium,unless a feasible assumption to estimate residual saturation is put forward.展开更多
Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses...Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.展开更多
The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems m...The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.展开更多
The landslide disaster caused by the argillaceous interlayer not only destroys buildings,cultivated land,and roads but also seriously endangers human life and safety.This study concerns the mineral composition of sele...The landslide disaster caused by the argillaceous interlayer not only destroys buildings,cultivated land,and roads but also seriously endangers human life and safety.This study concerns the mineral composition of selected argillaceous interlayer and their strength characteristics.To study the mineral composition of argillaceous interlayers,8 kinds of samples in the southern Jiangsu region of China were analyzed utilizing X-ray diffraction(XRD).The repeated direct shear strength tests(RDST)were carried out on the undisturbed specimens of the argillaceous interlayer.The results show that the argillaceous interlayer with high content of kaolinite shows ductile failure mode,which means that there is no obvious residual strength in the shear process.The arrangement of mineral particles on the shear surface of the specimens after different shear displacements was observed under the scanning electron microscope(SEM).It was observed that mineral particles on the shear surface showed a more directional arrangement with the increase of shear displacement.Furthermore,the influence of shear direction on the argillaceous interlayer with completely oriented mineral particles was studied through numerical experiments with four shear strength mechanisms proposition proposed.The influence of the mineral arrangement on the action occasion and magnitude of dilatancy component of shear strength is clarified in the shear mechanism.展开更多
Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoun...Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe–mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities.展开更多
Boehmite was prepared under heat treatment in water vapour, and the phase transformation of gibbsite heat-treated at various temperatures was investigated. The sample was characterized by scanning electron microscopy(...Boehmite was prepared under heat treatment in water vapour, and the phase transformation of gibbsite heat-treated at various temperatures was investigated. The sample was characterized by scanning electron microscopy(SEM), X-ray diffraction (XRD), thermogravimetry and differential thermalanalysis (TG-DTA), fourier transform infrared (FTIR),and BET surface area.Effect of temperature on preparation was studied in the range of 155°–195°.With the increase in temperature, transformation of gibbsite into crystalline boehmites took place as indicated by the X-ray diffraction (XRD). The shape of the grains in the prepared sample was cube-like morphology.In water vapour gibbsite transform into boehmite by a dissolution - precipitation mechanism.展开更多
Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term ...Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.展开更多
Talc is a hydroxyled, magnesium-rich, layered silicate that has the ideal chemical formula Mg3Si4O10(OH)2. Due to its unique properties, such as softness, chemical inertness, high thermal stability, low electrical con...Talc is a hydroxyled, magnesium-rich, layered silicate that has the ideal chemical formula Mg3Si4O10(OH)2. Due to its unique properties, such as softness, chemical inertness, high thermal stability, low electrical conductivity, lamellar habit, adsorption properties, and occurrence of a wide range of particle sizes that can be easily reduced by milling and high specific surface area, talc is widely used in many industries. A stratified deposit of unusual black talc, an occurrence of talc estimated to be more than half a billion tons, was found exposed in the late Neoproterozoic Dengying Formation, located in Guangfeng County, Jiangxi Province, southeastern China. The ores occur primarily as oolitic structures (Fig. 1). The mineralogical and geochemical characteristics of the ores were investigated by using multiple techniques. The ores were found to mainly consist of talc (30%–70%), dolomite, quartz, and magnesite. Most of talc crystals are ultrafine (with an average crystallite size of smaller than 5 μm) and appear as irregular broken or distorted lamellar flakes. The total organic carbon (TOC) content of the black talc ore samples is generally lower than 1.0%. Electron-microprobe analysis (EPMA) revealed low contents of Na, K, Ca and Mn, Fe, Ni, Al in the talc oolitic particles. The talc ores have low contents of toxic elements and relatively high contents of Li and Zn. The infrared spectrum of the black talc is similar to that of white talc from Trimouns (Pyrenees, France), and their Brunauer–Emmett-Teller (BET) specific surface areas, ranging from 15.7 to 23.2 m2/g, is much higher than those of white talc (normally lower than 5.0 m2/g), which may be due to the small size of the talc crystals.展开更多
Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quan...Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quantify the relationship between the structure damage state and shield tunnel structure deformation by the model test because of unpredictable effects of different scales between model test and prototype tunnel structure.Here,an in-situ monitoring project was conducted to study the excavation induced shield tunnel structure damage,which could be considered a prototype test on the tunnel deformation.The disaster performance of tunnel leakage,segment crack,segment dislocation and segment block drop-off during longitude deformation and cross-section ovality developments was analyzed.The results indicate that instead of the longitude deformation,the ovality value has the strongest correlation to the rest disease performance,which could be used as the assessment index of the tunnel health.For this tunnel,it is in health state when the ovality is less than 0.5%,and the serious damage could be found when the ovality value is higher than 0.77%.The research results provide valuable reference to shield tunnel health assessment and help complete the standard of shield tunnel construction.展开更多
基金Projects(42377148,51674265)supported by the National Natural Science Foundation of ChinaProject(2018YFC0603705)supported by the National Key Research and Development Program of China。
文摘Engineering shallow,large-span rock tunnels challenges deformation control and escalates construction costs.This study investigates the excavation compensation method(ECM)and its associated technologies to address these issues.Utilizing five key technologies,the ECM effectively modulates radial stress post-excavation,redistributes stress in the surrounding rock,and eliminates tensile stress at the excavation face.Pre-tensioning measures further enhance the rock’s residual strength,establishing a new stability equilibrium.Field tests corroborate the method’s effectiveness,demonstrating a crown settlement reduction of 3–8 mm,a nearly 50%decrease compared to conventional construction approaches.Additionally,material consumption and construction duration were reduced by approximately 30%–35%and 1.75 months per 100 m,respectively.Thus,the ECM represents a significant innovation in enhancing the stability and construction efficiency of large-span rock tunnels,marking a novel contribution to the engineering field.
基金Project(BK2012812)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51079053)supported by the National Natural Science Foundation of China+2 种基金Project(KYLX_0493)supported by the Scientific Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2014B38814)supported by the Fundamental Research Funds for Central Universities,ChinaProject(2014.1526)supported by the Open Research Fund Program of Key Laboratory of Geological Information of Ministry of Land and Resources,China
文摘For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.
基金Projects(41702320,52104125)supported by the National Natural Science Foundation of ChinaProject(ZR2021MD005)+2 种基金supported by the Natural Science Foundation of Shandong Province,ChinaProject(TMduracon2022002)supported by the Engineering Research Center of Marine Environmental Concrete Technology,Ministry of Education,China。
文摘Negative Poisson ratio(NPR)steel is a new material with high strength and toughness.This study conducted tensile tests at elevated temperatures to investigate the mechanical properties of NPR steel at high temperatures.The stress−strain curve,ultimate strength,yield strength,modulus of elasticity,elongation after fracture,and percentage reduction of area of NPR steel bars were measured at 9 different temperatures ranging from 20 to 800℃.The experimental results indicate that high-temperature environments significantly affect the mechanical properties of NPR steel.However,compared to other types of steel,NPR steel exhibits better resistance to deformation.When the test temperature is below 700℃,NPR steel exhibits a ductile fracture characteristic,while at 800℃,it exhibits a brittle fracture characteristic.Finally,based on the experimental findings,a constitutive model suitable for NPR steel at high temperatures is proposed.
基金Projects(41572277,41877229)supported by the National Natural Science Foundation of ChinaProject(2015A030313118)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(201607010023)supported by the Science and Technology Program of Guangzhou,China
文摘A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.
基金Project(51674265) supported by the National Natural Science Foundation of ChinaProjects(2018YFC0603705,2016YFC0600901) supported by the State Key Research Development Program of ChinaProject supported by the Yueqi Outstanding Scholar Award Program of China University of Mining&Technology,Beijing,China。
文摘For the 110 mining method,it is challenging to accurately calculate the support resistance of the roadway due to the lack of understanding of the dynamic movement of the overlying strata in this method.The consequential excessive support results in a significant increase in the cost of roadway support.The authors explored the overlying strata movement and roadway deformation of the gob-entry retaining in the 110 mining method to solve this problem.First,the typical stages of the roof-cutting gob-side entry were defined.Second,the mechanical model and calculation formula of the support resistance on the roof were explored.Then,using numerical simulation software,the starting ranges of the specific supports at different stages were verified and the feasibility of the support scheme was examined.Finally,combined with the field measurement data,the stress and the deformation of the gob roadway at different stages under the influence of two mining processes in the 110 mining method were obtained.The numerical simulation results obtained are consistent with the field test results,providing a theoretical basis for precision support at different stages by the 110 mining method.
基金Project(41877212)supported by the National Natural Science Foundation of ChinaProject(2017010)supported by the Water Conservancy Science and Technology Project of Jiangsu Province,ChinaProject(B200202013)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Traditional soil additives like Portland cement and lime are prone to cause the brittle fracture behavior of soil,and possibly,environmental impacts.This study explores the potential use of polyurethane organic polymer and sisal fiber in improving the mechanical performance of sand.The effects of polymer content,fiber content,and dry density on the unconfined compressive strength(UCS)and direct tensile strength(DTS)of the polymer-fiber-sand composite were evaluated.The results showed significant increase in UCS and DTS of the reinforced sand with the increase of polymer content,fiber content,and dry density.At high dry density condition,a single peaked stress−strain curve is often observed.Higher polymer content is beneficial to increasing the peak stress,while higher fiber content contributes more to the post-peak stress.The combined use of polymers and fibers in soil reinforcement effectively prevents the propagation and development of cracks under the stress.Scanning electron microscopy(SEM)test was also performed to investigate the micro-structural changes and inter-particle relations.It was found through SEM images that the surface coating,bonding,and filling effects conferred by polymer matrix greatly enhance the interfacial interactions,and hence provide a cohesive environment where the strength of fibers could be readily mobilized.
基金Project(40873015) supported by the National Natural Science Foundation of ChinaProject(08010302062) supported by the Eleventh Five-year Scientific and Technological Program of Anhui Province,China
文摘Rare earth element (REE) concentrations were measured by ICP-MS for groundwater collected from deep seated Taiyuan Fm limestone aquifer (from -400 to -530 m) in Renlou Coal Mine, northern Anhui Province, China. It can be concluded that the groundwater is warm (34.0-37.2 ℃) C1-Ca, Na type water with circum-neutral pH (7.35-8.28) and high total dissolved solids (TDS, 1 746-2 849 mg/L). The groundwater exhibits heavy REEs enrichment relative to light REEs compared with Post Archean Average Shale (PAAS), as well as their aquifer rocks (limestone). The enrichment of REEs is considered to be controlled by terrigeneous materials (e.g. zircon) in aquifer rocks, whereas the fractionation of REEs is controlled by marine derived materials (e.g. calcite), to a less extent, terrigeneous materials and inorganic complexation. The Ce anomalies normalized to PAAS and aquifer rocks are weak, which probably reflects the signature of the aquifer rock rather than redox conditions or pH. The similarities of REE patterns between groundwater and aquifer rocks imply that aquifer rocks play important roles in controlling the REE characteristics of groundwater, and then provide a probability for discrimination of groundwater sources by using REEs.
基金Projects(42007256, 41672258) supported by the National Natural Science Foundation of ChinaProject(B210201002)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In the present work,uniaxial compressive tests were carried out on limestone-like samples containing two parallel open fissures or cement-infilled fissures with different geometries.Mechanical property and crack behavior of limestone-like samples with two parallel open fissures or cement-infilled fissures were affected by bridge inclination angle and fissure inclination angle.Four types of coalescence of rock bridge for samples containing open fissures or cement-infilled fissures were summarized and classified.The closure of tensile crack was observed in the samples with small fissure inclination angle.This is a new phenomenon which is not mentioned in previous studies.Test results show that the peak strength,crack initiation stress,and coalescence type are different between open fissures and cement infilled fissures.The reason for this phenomenon is that grouting of cement can transfer stress and reduce stress concentration at the flaw tip and rock bridge area.
基金Project(41472241)supported by the National Natural Science Foundation of ChinaProject(KJXM2019028)supported by the Natural Resources Science and Technology Project of Jiangsu Province,ChinaProject(2019B17314)supported by the Fundamental Research Funds for the Central Universities,China。
文摘As a new kind of air-hardening soil reinforcement material,polymer is being widely applied in river-bank slope reinforcement and ecological slope protection area.Thus,more attention should be paid to study the characteristics of reinforced soil after immersion.In this study,water-induced changes in strength characteristics of sand reinforced with polymer and fibers were reported.Several factors,including polymer content(1%,2%,3%and 4%by weight of dry sand),immersion time(6,12,24 and 48 h),dry density(1.40,1.45,1.50,1.55 and 1.60 g/cm^(3),)and fiber content(0.2%,0.4%,0.6%and 0.8%by weight of dry sand)which may influence the strength characteristics of reinforced sand after immersion were analyzed.The microstructure of reinforced sand was analyzed with nuclear magnetic resonance(NMR)and scanning electron microscope(SEM).Experimental results indicate that the compressive strength increases with the increase of polymer content and decreases with the increase of immersion time;the softening coefficients decrease with the increase of the polymer content and immersion time and increase with an increment in density and fiber content.Fiber plays an active role in reducing water-induced loss of strength at 0.6%content.
基金Project(41302076)supported by the National Natural Science Foundation of ChinaProject(BJ14266)supported by Special Fund of Ministry of Science and Technology from the State Key Laboratory of Continental Dynamics(Northwest University),China
文摘Mineral contents and fractures of shale from well Yuye-1 and outcrops were examined mainly based on systematic description of the cores and outcrops, and data from experimental analyses. The data enabled us to thoroughly explore the mineralogy and developmental features of shale of the Lower Silurian Longmaxi Formation in the study area. The results show that,the Lower Silurian Longmaxi Shale(SLS) in the southeastern margin of Sichuan Basin, China, is primarily characterized by a high content of brittle minerals and a relatively low content of clay minerals. The total content of brittle minerals is approximately 57%,including 27% quartz, 12.2% feldspar, 11.2% carbonate and 2.4% pyrite. The total content of clay minerals reaches 41.6%,composed of illite(23.8%), mixed-layer of illite and smectite(I/S)(10.8%) and chlorite(7.0%). The SLS accommodates the widespread development of various types of fractures, including tectonic fractures, diagenetic fractures, inter-layer fractures and slip fractures. The developmental level of the fracture in the SLS is mainly influenced by faults, lithology, mineral contents and total organic carbon content(TOC) in study area.
基金Project(41072182)supported by the National Natural Science Foundation of ChinaProject(2010Z1-E101)supported by Science and Technology Program of Guangzhou City,China+1 种基金Project(20100103)supported by Science and Technology Program of Daya Bay,Huizhou City,ChinaProject(2012A030700008)supported by the Science and Technology Planning Program of Guangdong Province,China
文摘Nanoqueous phase liquid(NAPL) simulator is a powerful and popular mathematical model for modeling the flow and transport of non-aqueous phase liquids in subsurface,but the testing of its feasibility under water table fluctuation has received insufficient attention.The feature in a column test was tested through two cycles of water table fluctuation.The sandy medium in the column was initially saturated,and each cycle of water table fluctuation consisted of one water table falling and one rising,resulting in a drainage and an imbibition of the medium,respectively.It was found that the difference between the simulated and measured results in the first drainage of the column test was minor.However,with the propagation of the water table fluctuations,the simulation errors increased,and the simulation accuracy was not acceptable except for the first drainage in the two fluctuation cycles.The main reason was proved to be the estimation method of residual saturation used in this simulator.Also,based on the column tests,it was assumed that the resulting residual saturation from an incomplete imbibition process was a constant,with a value equal to that of the residual value resulting from the main imbibition process.The results obtained after modifying NAPL simulator with this assumption were found to be more accurate in the first cycle of water table fluctuation,but this accuracy decreased rapidly in the second one.It is concluded that NAPL simulator is not adequate in the case of LNAPL migration under water table fluctuation in sandy medium,unless a feasible assumption to estimate residual saturation is put forward.
基金Projects(41173055,41772118)supported by the National Natural Science Foundation of China
文摘Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.
基金Project (2011ZX05007-004) supported by the National Sciences and Technologies,ChinaProject (41502132) supported by the National Natural Science Foundation of China
文摘The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources,and most hydrocarbon reserves are stored in naturally-fractured reservoirs.Thus,fracture pathway systems may have a significant impact on reservoir performance.This article focuses on the core-and laboratory-based characterization of fractures.Through the developmental degrees,extended scale,output state and filling characteristics of various types of fractures,the results show that there are three distinct fracture types:1)nearly vertical fractures,2)oblique fractures,and 3)horizontal fractures.Based on a systematic study of the characterization of reservoir space,the main geologic setting of natural gas accumulation and the regional tectonic background,type 1 is mainly driven by the tectonic formation mechanism,and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism.While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism.The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity.Furthermore,connected fractures,dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems,with faults serving as the dominant charge pathways of highly pressurized gas in the study area.Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.
基金Project(41672258) supported by the National Natural Science Foundation of ChinaProject(2018045) supported by the Land and Resources Science&Technology Project of Jiangsu Province,China。
文摘The landslide disaster caused by the argillaceous interlayer not only destroys buildings,cultivated land,and roads but also seriously endangers human life and safety.This study concerns the mineral composition of selected argillaceous interlayer and their strength characteristics.To study the mineral composition of argillaceous interlayers,8 kinds of samples in the southern Jiangsu region of China were analyzed utilizing X-ray diffraction(XRD).The repeated direct shear strength tests(RDST)were carried out on the undisturbed specimens of the argillaceous interlayer.The results show that the argillaceous interlayer with high content of kaolinite shows ductile failure mode,which means that there is no obvious residual strength in the shear process.The arrangement of mineral particles on the shear surface of the specimens after different shear displacements was observed under the scanning electron microscope(SEM).It was observed that mineral particles on the shear surface showed a more directional arrangement with the increase of shear displacement.Furthermore,the influence of shear direction on the argillaceous interlayer with completely oriented mineral particles was studied through numerical experiments with four shear strength mechanisms proposition proposed.The influence of the mineral arrangement on the action occasion and magnitude of dilatancy component of shear strength is clarified in the shear mechanism.
文摘Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe–mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities.
文摘Boehmite was prepared under heat treatment in water vapour, and the phase transformation of gibbsite heat-treated at various temperatures was investigated. The sample was characterized by scanning electron microscopy(SEM), X-ray diffraction (XRD), thermogravimetry and differential thermalanalysis (TG-DTA), fourier transform infrared (FTIR),and BET surface area.Effect of temperature on preparation was studied in the range of 155°–195°.With the increase in temperature, transformation of gibbsite into crystalline boehmites took place as indicated by the X-ray diffraction (XRD). The shape of the grains in the prepared sample was cube-like morphology.In water vapour gibbsite transform into boehmite by a dissolution - precipitation mechanism.
基金Project(41802147)supported by the National Natural Science Foundation of ChinaProject(2016ZX05007-004)supported by the National Major Science and Technology Projects of China。
文摘Based on field observation,core description and well logging analysis,the tectonic-sedimentary framework of the Liangshan and Qixia Formations in the northwestern Sichuan Basin,China is deeply discussed.Two long-term sequence cycles were identified,denoted as LSC1 and LSC2,respectively.The sequence stratigraphic framework was established,suggesting the Liangshan Formation to be not isochronously deposited.Paleogeomorphy before deposition of LSC1 was reconstructed by the impression method.LSC1 was featured by thin,low-energy shoal deposits in the high topography,and thick inter-shoal sea and open sea deposits in the low topography.Meanwhile,paleogeomorphy before deposition of LSC2 was reconstructed using the residual thickness method,which was demonstrated to have primary high-energy,thick shoal deposits in the high topography,and thin inter-shoal and open sea deposits in the low topography.The results show that differential tectonic subsidence has already taken place during the Qixia Period,and thus the Dongwu Movement should occur earlier than previously expected.Meanwhile,pre-depositional paleogeomorphy has obvious controlling effects on the sequence stratigraphic filling and sedimentary facies distribution.Results of this study were expected to provide practical guidance to fine characterization of the sedimentary evolution process and prediction of high-quality reservoir distribution.
文摘Talc is a hydroxyled, magnesium-rich, layered silicate that has the ideal chemical formula Mg3Si4O10(OH)2. Due to its unique properties, such as softness, chemical inertness, high thermal stability, low electrical conductivity, lamellar habit, adsorption properties, and occurrence of a wide range of particle sizes that can be easily reduced by milling and high specific surface area, talc is widely used in many industries. A stratified deposit of unusual black talc, an occurrence of talc estimated to be more than half a billion tons, was found exposed in the late Neoproterozoic Dengying Formation, located in Guangfeng County, Jiangxi Province, southeastern China. The ores occur primarily as oolitic structures (Fig. 1). The mineralogical and geochemical characteristics of the ores were investigated by using multiple techniques. The ores were found to mainly consist of talc (30%–70%), dolomite, quartz, and magnesite. Most of talc crystals are ultrafine (with an average crystallite size of smaller than 5 μm) and appear as irregular broken or distorted lamellar flakes. The total organic carbon (TOC) content of the black talc ore samples is generally lower than 1.0%. Electron-microprobe analysis (EPMA) revealed low contents of Na, K, Ca and Mn, Fe, Ni, Al in the talc oolitic particles. The talc ores have low contents of toxic elements and relatively high contents of Li and Zn. The infrared spectrum of the black talc is similar to that of white talc from Trimouns (Pyrenees, France), and their Brunauer–Emmett-Teller (BET) specific surface areas, ranging from 15.7 to 23.2 m2/g, is much higher than those of white talc (normally lower than 5.0 m2/g), which may be due to the small size of the talc crystals.
基金Projects(BK20150337,BK20140845,BK20140844)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015Y04)supported by the Transportation Science and Technology Project of Jiangsu Province,China+1 种基金Project(41504081)supported by the National Natural Science Foundation of ChinaProjects(2014M561567,2016T90416)supported by the China Postdoctoral Science Foundation
文摘Health state of shield tunnels is one of the most important parameters for structure maintenance.Usually,the shield tunnel is extremely long in longitude direction and composed by many segments.It is difficult to quantify the relationship between the structure damage state and shield tunnel structure deformation by the model test because of unpredictable effects of different scales between model test and prototype tunnel structure.Here,an in-situ monitoring project was conducted to study the excavation induced shield tunnel structure damage,which could be considered a prototype test on the tunnel deformation.The disaster performance of tunnel leakage,segment crack,segment dislocation and segment block drop-off during longitude deformation and cross-section ovality developments was analyzed.The results indicate that instead of the longitude deformation,the ovality value has the strongest correlation to the rest disease performance,which could be used as the assessment index of the tunnel health.For this tunnel,it is in health state when the ovality is less than 0.5%,and the serious damage could be found when the ovality value is higher than 0.77%.The research results provide valuable reference to shield tunnel health assessment and help complete the standard of shield tunnel construction.