The hydration and thermal properties of cement-based materials containing various proportions of limestone powder as a partial replacement for ordinary Portland cement, were investigated and reported. Both compressive...The hydration and thermal properties of cement-based materials containing various proportions of limestone powder as a partial replacement for ordinary Portland cement, were investigated and reported. Both compressive and flexural strengths of cement mortar with various contents of limestone powder were tested to study the influence of limestone powder on the strength development of resulting mixtures. The hydration heat and its rate of evolution were also tested, which clearly showed that the replacement percentage of limestone powder had significant effects on the total hydration heat but only a modest influence on the rate of heat evolution of cement-limestone binder. Importantly, the reduction coefficient of limestone powder on the hydration heat, needed for estimation of adiabatic temperature rise of cement-limestone binder, was found to be approximately 0.51. Fundamental thermal properties of these concrete mixtures containing limestone powder were also studied. Increasing the percentage of limestone powder resulted in a significant reduction in the adiabatic temperature rise but only a slight increase in other thermal properties such as thermal conductivity, thermal diffusivity and specific heat. In addition, thermal analysis using finite-element modelling indicated that inclusion of limestone powder did not significantly affect the rate of temperature rise nor the occurrence time of the highest temperature at early ages.展开更多
Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab a...Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab.展开更多
基金Project(51579192) supported by the National Natural Science Foundation of ChinaProject(2013BC0359001) supported by the National Basic Research Program of ChinaProject(201506270058) supported by China Scholarship Council
文摘The hydration and thermal properties of cement-based materials containing various proportions of limestone powder as a partial replacement for ordinary Portland cement, were investigated and reported. Both compressive and flexural strengths of cement mortar with various contents of limestone powder were tested to study the influence of limestone powder on the strength development of resulting mixtures. The hydration heat and its rate of evolution were also tested, which clearly showed that the replacement percentage of limestone powder had significant effects on the total hydration heat but only a modest influence on the rate of heat evolution of cement-limestone binder. Importantly, the reduction coefficient of limestone powder on the hydration heat, needed for estimation of adiabatic temperature rise of cement-limestone binder, was found to be approximately 0.51. Fundamental thermal properties of these concrete mixtures containing limestone powder were also studied. Increasing the percentage of limestone powder resulted in a significant reduction in the adiabatic temperature rise but only a slight increase in other thermal properties such as thermal conductivity, thermal diffusivity and specific heat. In addition, thermal analysis using finite-element modelling indicated that inclusion of limestone powder did not significantly affect the rate of temperature rise nor the occurrence time of the highest temperature at early ages.
基金The supports from the Natural Science Research of Jiangsu Higher Education Institutions of China(21KJB580001)the National Natural Science Foundation of China(Grant No.52209162,51979152)+2 种基金Educational Commission of Hubei Province of China(T2020005)Young Top-notch Talent Cultivation Program of Hubei ProvinceJiangxi Provincial Natural Science Foundation(20212BAB214044)。
文摘Reinforced concrete(RC)structures are common in engineering,and usually exposed to air or water,may be subjected to various blast scenarios.This paper aims to investigate the blast resistance of an airbacked RC slab against underwater contact explosions(UWCEs).A detailed numerical model based on CLE method considering explosive,water,air,and RC slab is developed to examine the structural behavior of the air-backed RC slab due to UWCEs.At first,the reliability of the numerical method is validated by comparing the numerical results of an UWCE test with experimental data.Then,the difference in dynamic behavior of air-backed and water-backed RC slabs due to UWCEs is explored with the calibrated model.The results indicate that the blast response of the air-backed slab induced by UWCE is fiercer than that of water-backed slab with equal charge mass.In addition,parametric studies are also conducted to explore the effects of the charge mass,standoff distance,reinforcement spacing,concrete compression strength,and boundary condition on the blast performance of the air-backed RC slab.