The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response ...The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy.展开更多
Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together w...Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs.展开更多
Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)G...Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)Ga,and^(89)Zr.Among the radiotracers,the radioactive^(18)F-labelled chemical agent as PET probes plays a predominant role in monitoring,detecting,treating,and predicting tumours due to its perfect half-life.In this paper,the^(18)F-labelled chemical materials as PET probes are systematically summarized.First,we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging.It highlights the^(18)F-labelled chemical agents used as PET probes,including[^(18)F]-2-deoxy-2-[^(18)F]fluoro-D-glucose([^(18)F]-FDG),^(18)F-labelled amino acids,^(18)F-labelled nucleic acids,^(18)F-labelled receptors,^(18)F-labelled reporter genes,and^(18)F-labelled hypoxia agents.In addition,some PET probes with metal as a supplementary element are introduced briefly.Meanwhile,the^(18)F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail.The approach and strategies for the fabrication of^(18)F-labelled PET probes are also described briefly.The future development of the PET probe is also prospected.The development and application of^(18)F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.展开更多
基金supported by the National Key Research and Development of China(Grant No.2022YFB4601901)the National Natural Science Foundation of China(Grant No.12122202)。
文摘The use of ultra-high molecular weight polyethylene(UHMWPE)composite in the design of lightweight protective equipment,has gained a lot of interest.However,there is an urgent need to understand the ballistic response mechanism and theoretical prediction model of performance.This paper explores the ballistic response mechanism of UHMWPE composite through experimental and simulation analyses.Then,a resistance-driven modeling method was proposed to establish a theoretical model for predicting the bulletproof performance.The ballistic response mechanism of UHMWPE composite encompassed three fundamental modes:local response,structural response,and coupled response.The occurrence ratio of these fundamental response modes during impact was dependent on the projectile velocity and laminate thickness.The bulletproof performance of laminate under different response modes was assessed based on the penetration depth of the projectile,the bulging height on the rear face of the laminate,the thickness of remaining sub-laminate,and residual velocity of the projectile.The absolute deviations of bulletproof performance indicator between theoretical value and experimental value were well within 11.13%,demonstrating that the established evaluation model possessed high degree of prediction accuracy.
基金supported by funds from Huazhong University of Science and Technology,Wuhan,China
文摘Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs.
文摘Malignant tumours always threaten human health.For tumour diagnosis,positron emission tomography(PET)is the most sensitive and advanced imaging technique by radiotracers,such as radioactive^(18)F,^(11)C,^(64)Cu,^(68)Ga,and^(89)Zr.Among the radiotracers,the radioactive^(18)F-labelled chemical agent as PET probes plays a predominant role in monitoring,detecting,treating,and predicting tumours due to its perfect half-life.In this paper,the^(18)F-labelled chemical materials as PET probes are systematically summarized.First,we introduce various radionuclides of PET and elaborate on the mechanism of PET imaging.It highlights the^(18)F-labelled chemical agents used as PET probes,including[^(18)F]-2-deoxy-2-[^(18)F]fluoro-D-glucose([^(18)F]-FDG),^(18)F-labelled amino acids,^(18)F-labelled nucleic acids,^(18)F-labelled receptors,^(18)F-labelled reporter genes,and^(18)F-labelled hypoxia agents.In addition,some PET probes with metal as a supplementary element are introduced briefly.Meanwhile,the^(18)F-labelled nanoparticles for the PET probe and the multi-modality imaging probe are summarized in detail.The approach and strategies for the fabrication of^(18)F-labelled PET probes are also described briefly.The future development of the PET probe is also prospected.The development and application of^(18)F-labelled PET probes will expand our knowledge and shed light on the diagnosis and theranostics of tumours.