To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by exp...As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by experimental methods.First,the fatigue threshold test and fatigue crack growth rate test of this high-strength steel under different stress ratios were carried out.The influence of stress ratio on the fatigue properties of this steel was analyzed.Secondly,scanning electron microscope was used to analyze the crack growth specimen section of this steel.The crack growth and failure mechanism of this steel were revealed.Finally,based on the above research results,the stress ratio effect of high-strength steel was investigated from the perspectives of crack closure and driving force.Considering the fatigue behavior in the near-threshold stage and the destabilization stage,a fatigue crack growth behavior prediction model of highstrength steel was established.The accuracy of the model was verified by test data.Moreover,the applicability of the modified model to various materials and its excellent predictive ability were verified through comparison with literature data and existing models.展开更多
This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input satur...This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.展开更多
The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works ...The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
文摘As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by experimental methods.First,the fatigue threshold test and fatigue crack growth rate test of this high-strength steel under different stress ratios were carried out.The influence of stress ratio on the fatigue properties of this steel was analyzed.Secondly,scanning electron microscope was used to analyze the crack growth specimen section of this steel.The crack growth and failure mechanism of this steel were revealed.Finally,based on the above research results,the stress ratio effect of high-strength steel was investigated from the perspectives of crack closure and driving force.Considering the fatigue behavior in the near-threshold stage and the destabilization stage,a fatigue crack growth behavior prediction model of highstrength steel was established.The accuracy of the model was verified by test data.Moreover,the applicability of the modified model to various materials and its excellent predictive ability were verified through comparison with literature data and existing models.
基金Project(51979116)supported by the National Natural Science Foundation of ChinaProject(2018KFYYXJJ012,2018JYCXJJ045)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project(YT19201702)supported by the Innovation Foundation of Maritime Defense Technologies Innovation Center,ChinaProject supported by the HUST Interdisciplinary Innovation Team Project,China。
文摘This paper addresses the problem of three-dimensional trajectory tracking control for underactuated autonomous underwater vehicles in the presence of parametric uncertainties,environmental disturbances and input saturation.First,a virtual guidance control strategy is established on the basis of tracking error kinematics,which resolves the overall control system into two cascade subsystems.Then,a first-order sliding mode differentiator is introduced in the derivation to avoid tedious analytic calculation,and a Gaussian error function-based continuous differentiable symmetric saturation model is explored to tackle the issue of input saturation.Combined with backstepping design techniques,the neural network control method and an adaptive control approach are used to estimate composite items of the unknown uncertainty and approximation errors.Meanwhile,Lyapunov-based stability analysis guarantees that control error signals of the closed-loop system are uniformly ultimately bounded.Finally,simulation studies are conducted for the trajectory tracking of a moving target and a spiral line to validate the effectiveness of the proposed controller.
基金supported by the Chinese Universities Scientific Fund(ZYGX2020ZB022)the National Natural Science Foundation of China(51775090).
文摘The dynamic wireless communication network is a complex network that needs to consider various influence factors including communication devices,radio propagation,network topology,and dynamic behaviors.Existing works focus on suggesting simplified reliability analysis methods for these dynamic networks.As one of the most popular modeling methodologies,the dynamic Bayesian network(DBN)is proposed.However,it is insufficient for the wireless communication network which contains temporal and non-temporal events.To this end,we present a modeling methodology for a generalized continuous time Bayesian network(CTBN)with a 2-state conditional probability table(CPT).Moreover,a comprehensive reliability analysis method for communication devices and radio propagation is suggested.The proposed methodology is verified by a reliability analysis of a real wireless communication network.