It has been successfully demonstrated can be widely used in nano-photonics applications owing to their flexible wavefront manipulation in a limited physical profile.However,how to improve the efficiency for the transm...It has been successfully demonstrated can be widely used in nano-photonics applications owing to their flexible wavefront manipulation in a limited physical profile.However,how to improve the efficiency for the transmission light is still a challenge.We experimentally demonstrate that the sine-shaped metallic meanderline fabricated by focus ion beam technology converts circularly polarized(CP)light to its opposite handedness and sends them into different propagation directions depending on the polarization states in near-infrared and visible frequency regions.The beam splitting behavior is well characterized by a simple geometry relation,following the rule concluded from other works on the wavefront manipulation of metasurface with phase discontinuity.Importantly,the meanderline is demonstrated to be more efficient in realizing the same functions due to the suppressed high order diffractions resulted from the absence of interruption in phase profile.The theoretical efficiency reaches 67%.Particularly,potential improvements are feasible by changing or optimizing shape of the meanderline,offering high flexibility in applications for optical imaging,communications and other phase-relative techniques.Additionally,since the continuous phase provided by the meanderline can improve the sampling efficiency of the phase function,it is helpful in realizing high quality hologram.展开更多
For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the s...For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.展开更多
Functionally graded composite/hybrid materials(FGCM/FGHCM)were produced by adding B_(4)C,TiO_(2),and B_(4)C+TiO_(2)ceramic materials at various ratios(0-50%)into the AA6082 matrix.The analysis of the damage caused by^...Functionally graded composite/hybrid materials(FGCM/FGHCM)were produced by adding B_(4)C,TiO_(2),and B_(4)C+TiO_(2)ceramic materials at various ratios(0-50%)into the AA6082 matrix.The analysis of the damage caused by^(60) ions'(1.173-1.1332 MeV)on the material was examined using the SRIM/TRIM Monte Carlo simulation software.In the simulation,the following data regarding the atoms of the target materials were obtained:ion distribution,target ionization,total displacements,surface binding energy,lattice binding energy,and displacement energy.Among the studied four materials,the one with the highest ion range value was found to be AA6082 with 8550A.TiO_(2)was found to be the reinforcement material that reduced the ion range the most in the material.Due to its high binding energy,B_(4)C reinforced AA6082+(0-50%)B_(4)C FGCM was found to have the least vacancy with 4782/ion.展开更多
基金supported by National Natural Science Funds (61601367, 61601375)the Fundamental Research Funds for the Central Universities (3102016 ZY028)
文摘It has been successfully demonstrated can be widely used in nano-photonics applications owing to their flexible wavefront manipulation in a limited physical profile.However,how to improve the efficiency for the transmission light is still a challenge.We experimentally demonstrate that the sine-shaped metallic meanderline fabricated by focus ion beam technology converts circularly polarized(CP)light to its opposite handedness and sends them into different propagation directions depending on the polarization states in near-infrared and visible frequency regions.The beam splitting behavior is well characterized by a simple geometry relation,following the rule concluded from other works on the wavefront manipulation of metasurface with phase discontinuity.Importantly,the meanderline is demonstrated to be more efficient in realizing the same functions due to the suppressed high order diffractions resulted from the absence of interruption in phase profile.The theoretical efficiency reaches 67%.Particularly,potential improvements are feasible by changing or optimizing shape of the meanderline,offering high flexibility in applications for optical imaging,communications and other phase-relative techniques.Additionally,since the continuous phase provided by the meanderline can improve the sampling efficiency of the phase function,it is helpful in realizing high quality hologram.
基金supported by the National Natural Science Foundation of China(61201323)the Special Fund Project for Promoting Scientific and Technological Innovation in Xuzhou City(KC18013)the Cultivation Project of Xuzhou Institute of Technology(XKY2017112)
文摘For a class of fractional-order linear continuous-time switched systems specified by an arbitrary switching sequence,the performance of PDα-type fractional-order iterative learning control(FOILC)is discussed in the sense of L^p norm.When the systems are disturbed by bounded external noises,robustness of the PDα-type algorithm is firstly analyzed in the iteration domain by taking advantage of the generalized Young inequality of convolution integral.Then,convergence of the algorithm is discussed for the systems without any external noise.The results demonstrate that,under some given conditions,both convergence and robustness can be guaranteed during the entire time interval.Simulations support the correctness of the theory.
基金the Scientific Research Projects Office of Gazi University,Turkiye(Grant Nos.FGA-2022-7521 and FKA-2023-8617)the financial support of TUBITAK 2211-C and YOK 100/2000 programs。
文摘Functionally graded composite/hybrid materials(FGCM/FGHCM)were produced by adding B_(4)C,TiO_(2),and B_(4)C+TiO_(2)ceramic materials at various ratios(0-50%)into the AA6082 matrix.The analysis of the damage caused by^(60) ions'(1.173-1.1332 MeV)on the material was examined using the SRIM/TRIM Monte Carlo simulation software.In the simulation,the following data regarding the atoms of the target materials were obtained:ion distribution,target ionization,total displacements,surface binding energy,lattice binding energy,and displacement energy.Among the studied four materials,the one with the highest ion range value was found to be AA6082 with 8550A.TiO_(2)was found to be the reinforcement material that reduced the ion range the most in the material.Due to its high binding energy,B_(4)C reinforced AA6082+(0-50%)B_(4)C FGCM was found to have the least vacancy with 4782/ion.