Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to...Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated.展开更多
The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosu...The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.展开更多
Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2...Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2)O at different coverage rates on smithsonite(101)surface was innovatively investigated using density-functional theory(DFT)calculations and molecular dynamics(MD)simulations by analyzing adsorption model,interaction energy,atomic distance,density of state,electron density difference,concentration profile,radial distribution function and self-diffusion coefficient.We found that single H_(2)O preferred to be dissociated on smithsonite(101)surface via the interaction of surface Zn with the Ow of H_(2)O and H-bond between Hw of H_(2)O and surface Os.However,dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H_(2)O,and dissociation adsorption remained the main adsorption mechanism.Moreover,we found the interaction between smithsonite surface and H_(2)O was weakened as a function of H_(2)O coverage,which was because the presence of interlayer H_(2)O and different layers of H_(2)O decreased the reactivity of the smithsonite surface.The H_(2)O is mainly adsorbed on the smithsonite surface by forming three layers of H_(2)O(about 10–15Å),with the ordering degree gradually decreasing.展开更多
Flotation tests, contact angle measurements, infrared spectrum analyses, X-ray analyses and computer simulation were carried out in order to study the activation mechanism of lime-depressed pyrite with oxalic acid. Th...Flotation tests, contact angle measurements, infrared spectrum analyses, X-ray analyses and computer simulation were carried out in order to study the activation mechanism of lime-depressed pyrite with oxalic acid. The results show that the oxalic acid effectively eliminated the hydrophilic calcium film from the surface of pyrite. Therefore, the efficiency of pyrite flotation was also activated. The results indicate that after reacting with hydrophobic insoluble remainders on the surface of pyrite, oxalic acid can pro- duce hydrophilic compounds, such as CaC03, Ca(OH)2 and Fe(OH)3. As a consequence, a flesh pyrite layer was exposed and its flotation activated.展开更多
Large amounts of solid wastes and flue gases are generated in iron and steel production process,probably leading to serious environmental pollution without duly handle.An innovative and green process of simultaneous r...Large amounts of solid wastes and flue gases are generated in iron and steel production process,probably leading to serious environmental pollution without duly handle.An innovative and green process of simultaneous reduction of zinc-bearing dusts and activation of low-rank coal was developed and its mechanism was clarified in this paper.Under the optimal conditions,the reduced zinc-bearing dusts containing low harmful elements(0.02%Zn,0.015%K and 0.03%Na)could be made as high-quality burden for blast furnace while the low-rank coal was transferred into K,Na-embedded activated carbon,which can be used as effective adsorbent for purification of SO_(2) and NO-containing flue gases.The solid wastes were successfully utilized to treat the flue gases through the process.The synergetic activation and reduction mechanism in the process was revealed.The coupling effect between reduction reactions of metal oxides in the dusts and activation reaction of carbon in the coal promoted the simultaneous reduction and activation process.In the meanwhile,part of the potassium and sodium from the zinc-bearing dusts could be adsorbed by the activated carbon and played a catalytic role in the activation process.展开更多
The influence on fine particle aggregation and flotation behavior induced by high intensity conditioning(HIC) from saturated of the slurry with CO2 saturation was investigated.Bubble size measurements were conducted.T...The influence on fine particle aggregation and flotation behavior induced by high intensity conditioning(HIC) from saturated of the slurry with CO2 saturation was investigated.Bubble size measurements were conducted.The effect of dissolved gas,xanthate addition and agitation speed on fine sphalerite particle aggregation-and flotation-behavior were studied.The results show that during HIC in air or CO2 saturated water xanthate acts as a frother.The dissolved gas content in the pulp and HIC play a synergistic role in promoting fine particle aggregation and hence flotation;a significantly enhanced aggregation of fine sphalerite particles in a CO2 saturated slurry by HIC is observed.The aggregate size increased when the agitation speed was increased from 700 r/min to 1500 r/min.Increasing the HIC speed to 1500 r/min caused a positive impact on flotation kinetics.Further increasing the speed to 2000 r/min resulted in an adverse effect on flotation kinetics.展开更多
In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalc...In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process of the ore. Flotation results showed that when the concentration of H_(2)O_(2) increased from 0%(by weight) to 5%, the flotation recovery of chalcopyrite decreased sharply.However, with increasing H_(2)O_(2) concentration from 5% to 30%, chalcopyrite recovery improved relatively to different degrees with different collector concentrations. Analyses of X-ray photoelectron spectroscopy(XPS) and inductively coupled plasma-atomic optical emission spectrophotometry(ICP-OES) results indicated that the pretreatment with H_(2)O_(2) caused that hydrophilic substance formed on chalcopyrite surface with the dissolution of copper ions, and the dissolution amount of copper increased with the increase of H_(2)O_(2) concentration. UV–visible spectrophotometer and Fourier transform infrared spectrum(FTIR) studies indicated that the pretreatment of chalcopyrite with H_(2)O_(2) had little effect on the adsorption amount of potassium butyl xanthate(PBX) on chalcopyrite surface. However, due to the dissolution of copper ions, PBX interacted with chalcopyrite mainly as buthyl dixanthogen(BX)_(2).展开更多
The utilization of Ca ion as assistant depressant of CMC on talc has been widely reported.Thus,the study on the adsorption mechanism of Ca ion on talc surface is very crucial for understanding the performance of CMC o...The utilization of Ca ion as assistant depressant of CMC on talc has been widely reported.Thus,the study on the adsorption mechanism of Ca ion on talc surface is very crucial for understanding the performance of CMC on talc depression.In this paper,mechanism insights into hydrated Ca ion adsorption on talc(001) basal surface were creatively provided using DFT calculation.[Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) were determined as the effective hydrate components for Ca ion adsorption,and the top O site was the most favorable position for their adsorptions on talc surface.Furthermore,the adsorption mechanisms of [Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) on talc surface were found to be not the Ca-O chemical bond,but the hydrogen bonding formed by the H atom of the H_(2)O ligand and the surface O atom.H_(2)O acted like a bridge to connect them to the talc surface.Moreover,the hydrogen bonding was formed due to the hybridization of H 1s orbital with the O 2s,O 2p orbitals.Simultaneously,electrons transferred between the H atom and the surface O atom.This work provides theoretical insights into the Ca ion adsorption on talc surface,which can help deeply understand the talc flotation using CMC as depression.展开更多
The flotation separation of scheelite from fluorite and calcite using dodecyltrimethylammonium chloride (DTAC), dodecyldimethylbenzylammonium chloride (DDBAC), or didodecyldimethylammonium chloride (DDDAC) as th...The flotation separation of scheelite from fluorite and calcite using dodecyltrimethylammonium chloride (DTAC), dodecyldimethylbenzylammonium chloride (DDBAC), or didodecyldimethylammonium chloride (DDDAC) as the collector has been investigated. The results show that the selectivity of these collectors for these three calcareous minerals falls in the order: DDDAC 〉 DDBAC 〉 DTAC. A significantly different flotation response of scheelite compared to the other two calcareous minerals was observed over the pH range from 7 to 8 for DDDAC as the collector. A concentrate containing 41.40% W03 could be produced from a feed mixture containing 23.22% WO3 at the DDDAC concentration of 4.0× 10^-4 mol/L. The WO3 recovery was 92.92% under these conditions. The results of zeta potential measurements suggest that electrostatic interactions are the main forces between DDDAC and the minerals. When the concentration of DDDAC is from 2× 10^-4 to 4×10-3 mol/L large differences in adsorption density, and adsorption kinetics, of DDDAC onto scheelite, calcite, and fluorite provide desirable conditions for achieving high selectivity.展开更多
One characteristic of electro-flotation is the presence of micro bubbles that are well known for improving the flotation performance of fine particles. An electro-flotation method was studied with fine scheelite and f...One characteristic of electro-flotation is the presence of micro bubbles that are well known for improving the flotation performance of fine particles. An electro-flotation method was studied with fine scheelite and fluorite particles sized into three different fractions. Experiments were performed in a modified Hallimond tube. We investigated the effects of gas holdup, particle size, and different mesh electrode apertures on mineral recovery. Flotation results show that two size fractions show increased flotation recovery as the gas holdup increases. For the sized scheelite and fluorite, the flotation effect is diverse for different sizes of the cathode aperture. Pictures of the bubbles taken by a high speed CCD were used to determine the hydrogen bubble size distribution generated as a function of collector, current density, and electrode size. The diameters of the hydrogen bubbles ranged from 12 to 117μm in alkaline conditions.展开更多
In the flotation process, bubble is a key factor in studying bubble-particle interaction and fine particle flo- tation. Knowledge on size distribution of bubbles in a flotation system is highly important. In this stud...In the flotation process, bubble is a key factor in studying bubble-particle interaction and fine particle flo- tation. Knowledge on size distribution of bubbles in a flotation system is highly important. In this study, bubble distributions in different reagent concentrations, electrolyte concentrations, cathode apertures, and current densities in electroflotation are determined using a high-speed camera. Average bubble sizes under different conditions are calculated using Image-Pro@ Plus (Media Cybernetics@, MD, USA) and SigmaScan@ Pro (Systat Software, CA, USA) software. Results indicate that the average sizes of bubbles, which were generated through 38, 50, 74, 150, 250, 420, and 1000 μm cathode apertures, are 20.2, 29.5, 44.6, 59.2, 68.7, 78.5, and 88.8 μm, respectively. The optimal current density in electroflotation is 20 A/m2. Reagent and electrolyte concentrations, current density, and cathode aperture are important factors in controlling bubble size and nucleation. These factors also contribute to the control of fine- Particle flotation.展开更多
Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and h...Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.展开更多
Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a deta...Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite.展开更多
Effects of collectors(butyl xanthate(BX), O-isopropyl-N-sulfur ethyl carbamate(Z-200) and emulsified kerosene), dereagent(sodium sulfide) and depressant thioglycollic acid(TGA) on the flotation of chalcocite and molyb...Effects of collectors(butyl xanthate(BX), O-isopropyl-N-sulfur ethyl carbamate(Z-200) and emulsified kerosene), dereagent(sodium sulfide) and depressant thioglycollic acid(TGA) on the flotation of chalcocite and molybdenite were investigated through flotation. The first principle theory was adopted to understand the difference of their surfaces and reaction between minerals and reagents. Results of flotation tests revealed that selectivity of emulsified kerosene is the best of three collectors in separation of chalcocite and molybdenite, though the others also display excellent collecting properties. Sodium sulfide can effectively remove collectors adsorbed on chalcocite surface, and TGA is an effective depressant of chalcocite at pH 8-9. Through first principle study, molybdenite displays relatively stronger covalence property while bonding interaction between copper atoms in chalcocite enhanced its ionicity. Bonding interaction is weaker in reaction of TGA and molybdenite, so it shows higher hydrophobicity and better flotability. Therefore, TGA is an effective inhibitor in the separation.展开更多
In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mech...In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mechanism was revealed by contact angle measurement, FTIR analysis, Zeta potential test and XPS analysis. The flotation experiment results showed that scheelite and calcite could be efficiently separated under the following conditions: pulp p H=9.5, Na OL concentration of 1.5×10^(-4)mol/L, EDTMPS concentration of 3.0×10^(-5)mol/L, a scheelite concentrate with WO3grade of 65.49%, recovery of 83.29%and separation efficiency of 65.29% could be obtained from the artificially mixed minerals. The analysis results of mineral surface properties demonstrated that EDTMPS was strongly adsorbed onto the calcite surface through the reaction between the phosphonate group and the calcium ions, which hindered Na OL adsorption and increased the hydrophilicity of calcite. However, EDTMPS had weak adsorption strength on the scheelite surface, which didn’t affect further adsorption of Na OL, hence, the scheelite remained hydrophobic. Consequently, the selective adsorption of EDTMPS on the two minerals’ surfaces increased a difference in wettability and thus enabling them to be separated by flotation. Finally, the mechanism model of this flotation separation process was established.展开更多
Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limite...Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limited due to the occurrence of side reactions in the synthesis process.In this study,a designated composite consisted of crystalline zeolites and amorphous calcium silicate hydrate was selected,which was direct synthesized from fly ash under conditions of a Ca/Si molar ratio of 0.8,an initial NaOH concentration of 0.5 mol/L,a hydrothermal temperature of 170℃and a liquid–solid ratio of 15 mL/g.The results indicated that this composite had superior adsorption property for a variety of heavy metals,which was based on the exchange of calcium and sodium ions in zeolites and calcium silicate hydrate.Its adsorption capacities for Pb^(2+),Ni^(2+),Cd^(2+),Zn^(2+),Cu^(2+)and Cr^(3+)attained 409.4,222.4,147.5,93.2,101.1 and 157.0 mg/g,respectively,in single solution with a pH of 4.5.After regulating the synthesis conditions,the transformation of amorphous calcium silicate hydrate into crystallized tobermorite weakened the adsorption capacity of the composite.Besides,due to the competitive adsorption in a multiple ions solution,the adsorption capacities for these heavy metals had a reduction.展开更多
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management.Recently,electrocatalytically converting polyethylene terephthalate(PET)into format...Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management.Recently,electrocatalytically converting polyethylene terephthalate(PET)into formate and hydrogen has aroused great interest,while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol(PET monomer)oxidation reaction(EGOR)remains a challenge.Herein,a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy.Benefiting from the interconnected ultrathin nanosheet architecture,dual dopants induced upshifting d band centre and facilitated in situ structural reconstruction,the Co and Cl co-doped Ni_(3)S_(2)(Co,Cl-NiS)outperforms the singledoped and undoped analogues for EGOR.The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency(>92%)and selectivity(>91%)at high current densities(>400 mA cm^(−2)).Besides producing formate,the bifunctional Co,Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h^(−1)in 2 M KOH,at 1.7 V.This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes,but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.展开更多
Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment a...Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation.展开更多
Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores w...Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.展开更多
Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce th...Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce the differential adsorption of pectin onto molybdenite and talc surfaces for enhanced flotation separation.Contact-angle experiments,scanning electron microscopy,adsorption measurements,timeof-flight secondary-ion mass spectrometry,and X-ray photoelectron spectroscopy analyses were conducted to reveal the interaction mechanism.Results illustrated that molybdenite and talc could not be separated using pectin alone,while molybdenite was selectively depressed after surface modification by copper sulfate and this effect was strengthened under alkaline conditions.Metal sites(Mg,Si and Mo)of talc and molybdenite themselves were unable to react with pectin,whereas Cu+would deposit and further function as active site for pectin chemisorption after surface modification.However,the quantity of deposited Cu sites dropped on talc surface and increased on molybdenite surface with increased pH,and the Mo atoms of molybdenite crystal were activated to take part in pectin chemisorption.Therefore,more pectin was adhered on molybdenite surface,which imparted molybdenite stronger wettability.Herein,surface-modification through metal ions can enable the differential adsorption of organic depressants and enhance the flotation separation of minerals.展开更多
基金supported by the Postdoctoral Fellowship Program(Grade A)of China Postdoctoral Science Foundation(No.BX20240429)the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2024ZD1004007)+3 种基金the National Key R&D Program of China(Nos.2022YFC2904502 and 2022YFC2904501)the National Natural Science Foundation of China(No.52204298)the Major Science and Technology Projects in Yunnan Province(No.202202AB080012)the High Performance Computing Center of Central South University。
文摘Herein,a first-principles investigation was innovatively conducted to research the surface oxidation of ZnS-like sphalerite in the absence and presence of H_(2)O .The findings showed that single O_(2) was preferred to be dissociated adsorption on sphalerite surface by generating SAO and Zn AO bonds,and the S atom on the surface was the most energy-supported site for O_(2) adsorption,on which a≡Zn-O-S-O-Zn≡structure will be formed.However,dissociated adsorption of single H_(2)O will not happen.It was preferred to be adsorbed on the top Zn atom on sphalerite surface in molecular form through Zn-O bond.Besides,sphalerite oxidation can occur as if O_(2) was present regardless of the presence of H_(2)O ,and when H_(2)O and O_(2) coexisted,the formation of sulfur oxide(SO_(2) )needed a lower energy barrier and it was easier to form on sphalerite surface than that only O_(2) existed.In the absence of H_(2)O ,when SO_(2) was generated,further oxidation of which would form neutral zinc sulfate.In the presence of H_(2)O ,the formation of SO_(2) on sphalerite surface was easier and the rate of further oxidation to form sulfate was also greater.Consequently,the occurrence of sphalerite oxidation was accelerated.
基金supported by the Youth Science Foundation of China(No.52004333)the Key Laboratory of Hunan Province for Clean and Efficiency Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘The flotation separation of magnesite from calcium-containing minerals has always been a difficult subject in minerals processing.This work studied the inhibition effects of carboxymethyl cellulose(CMC),sodium lignosulphonate,polyaspartic acid(PASP)and sodium silicate on flotation behaviors of magnesite,dolomite and calcite,providing guidance for the development of reagents in magnesite flotation.The micro-flotation results showed that among these four depressants,sodium silicate presented the strongest selectivity due to the highest recovery difference,and the flotation separation of magnesite from dolomite and calcite could be achieved by using sodium silicate as the depressant.Contact angle measurement indicated that the addition of sodium silicate caused the largest differences in surface wettability of the three minerals,which was in line with micro-flotation tests.Furthermore,zeta potential test,the Fourier transform infrared(FT-IR)spectroscopy and atomic force microscope(AFM)imaging were used to reveal the inhibition mechanism of sodium silicate.The results indicated that the dominated component SiO(OH)3of sodium silicate could adsorb on minerals surfaces,and the adsorption of sodium silicate hardly affected the adsorption of NaOL on magnesite surface,but caused the reduction of NaOL adsorption on dolomite and calcite surfaces,thereby increasing the flotation selectivity.
基金This work was supported in part by the High Performance Com-puting Center of Central South UniversityThis study was finan-cially supported by the National Natural Science Foundation of China(No.51674291).
文摘Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2)O at different coverage rates on smithsonite(101)surface was innovatively investigated using density-functional theory(DFT)calculations and molecular dynamics(MD)simulations by analyzing adsorption model,interaction energy,atomic distance,density of state,electron density difference,concentration profile,radial distribution function and self-diffusion coefficient.We found that single H_(2)O preferred to be dissociated on smithsonite(101)surface via the interaction of surface Zn with the Ow of H_(2)O and H-bond between Hw of H_(2)O and surface Os.However,dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H_(2)O,and dissociation adsorption remained the main adsorption mechanism.Moreover,we found the interaction between smithsonite surface and H_(2)O was weakened as a function of H_(2)O coverage,which was because the presence of interlayer H_(2)O and different layers of H_(2)O decreased the reactivity of the smithsonite surface.The H_(2)O is mainly adsorbed on the smithsonite surface by forming three layers of H_(2)O(about 10–15Å),with the ordering degree gradually decreasing.
基金the financial support from the Key Projects in the National Science & Technology Pillar Program for the Eleventh Five-Year Plan (No. 2006BAB02A06)
文摘Flotation tests, contact angle measurements, infrared spectrum analyses, X-ray analyses and computer simulation were carried out in order to study the activation mechanism of lime-depressed pyrite with oxalic acid. The results show that the oxalic acid effectively eliminated the hydrophilic calcium film from the surface of pyrite. Therefore, the efficiency of pyrite flotation was also activated. The results indicate that after reacting with hydrophobic insoluble remainders on the surface of pyrite, oxalic acid can pro- duce hydrophilic compounds, such as CaC03, Ca(OH)2 and Fe(OH)3. As a consequence, a flesh pyrite layer was exposed and its flotation activated.
基金the National Natural Science Foundation of China (No. 51574281), which supplied us with the facilities and funds needed to completed the experiments
文摘Large amounts of solid wastes and flue gases are generated in iron and steel production process,probably leading to serious environmental pollution without duly handle.An innovative and green process of simultaneous reduction of zinc-bearing dusts and activation of low-rank coal was developed and its mechanism was clarified in this paper.Under the optimal conditions,the reduced zinc-bearing dusts containing low harmful elements(0.02%Zn,0.015%K and 0.03%Na)could be made as high-quality burden for blast furnace while the low-rank coal was transferred into K,Na-embedded activated carbon,which can be used as effective adsorbent for purification of SO_(2) and NO-containing flue gases.The solid wastes were successfully utilized to treat the flue gases through the process.The synergetic activation and reduction mechanism in the process was revealed.The coupling effect between reduction reactions of metal oxides in the dusts and activation reaction of carbon in the coal promoted the simultaneous reduction and activation process.In the meanwhile,part of the potassium and sodium from the zinc-bearing dusts could be adsorbed by the activated carbon and played a catalytic role in the activation process.
基金Project 50674103 supported by the National Natural Science Foundation of China
文摘The influence on fine particle aggregation and flotation behavior induced by high intensity conditioning(HIC) from saturated of the slurry with CO2 saturation was investigated.Bubble size measurements were conducted.The effect of dissolved gas,xanthate addition and agitation speed on fine sphalerite particle aggregation-and flotation-behavior were studied.The results show that during HIC in air or CO2 saturated water xanthate acts as a frother.The dissolved gas content in the pulp and HIC play a synergistic role in promoting fine particle aggregation and hence flotation;a significantly enhanced aggregation of fine sphalerite particles in a CO2 saturated slurry by HIC is observed.The aggregate size increased when the agitation speed was increased from 700 r/min to 1500 r/min.Increasing the HIC speed to 1500 r/min caused a positive impact on flotation kinetics.Further increasing the speed to 2000 r/min resulted in an adverse effect on flotation kinetics.
基金the support of the National Natural Science Foundation of China (No. 52174268)the Independent Exploration and Innovation Project of Graduate Students of Central South University (No. 2021zzts0885)。
文摘In this study, chalcopyrite was oxidized in hydrogen peroxide(H_(2)O_(2)) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H_(2)O_(2) treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process of the ore. Flotation results showed that when the concentration of H_(2)O_(2) increased from 0%(by weight) to 5%, the flotation recovery of chalcopyrite decreased sharply.However, with increasing H_(2)O_(2) concentration from 5% to 30%, chalcopyrite recovery improved relatively to different degrees with different collector concentrations. Analyses of X-ray photoelectron spectroscopy(XPS) and inductively coupled plasma-atomic optical emission spectrophotometry(ICP-OES) results indicated that the pretreatment with H_(2)O_(2) caused that hydrophilic substance formed on chalcopyrite surface with the dissolution of copper ions, and the dissolution amount of copper increased with the increase of H_(2)O_(2) concentration. UV–visible spectrophotometer and Fourier transform infrared spectrum(FTIR) studies indicated that the pretreatment of chalcopyrite with H_(2)O_(2) had little effect on the adsorption amount of potassium butyl xanthate(PBX) on chalcopyrite surface. However, due to the dissolution of copper ions, PBX interacted with chalcopyrite mainly as buthyl dixanthogen(BX)_(2).
基金supported in part by the High Performance Computing Center of Central South Universityfinancially supported by the National Natural Science Foundation of China (No.51674291)。
文摘The utilization of Ca ion as assistant depressant of CMC on talc has been widely reported.Thus,the study on the adsorption mechanism of Ca ion on talc surface is very crucial for understanding the performance of CMC on talc depression.In this paper,mechanism insights into hydrated Ca ion adsorption on talc(001) basal surface were creatively provided using DFT calculation.[Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) were determined as the effective hydrate components for Ca ion adsorption,and the top O site was the most favorable position for their adsorptions on talc surface.Furthermore,the adsorption mechanisms of [Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) on talc surface were found to be not the Ca-O chemical bond,but the hydrogen bonding formed by the H atom of the H_(2)O ligand and the surface O atom.H_(2)O acted like a bridge to connect them to the talc surface.Moreover,the hydrogen bonding was formed due to the hybridization of H 1s orbital with the O 2s,O 2p orbitals.Simultaneously,electrons transferred between the H atom and the surface O atom.This work provides theoretical insights into the Ca ion adsorption on talc surface,which can help deeply understand the talc flotation using CMC as depression.
基金supported by the State Key Program of National Natural Science Foundation of China (No. 50834006)
文摘The flotation separation of scheelite from fluorite and calcite using dodecyltrimethylammonium chloride (DTAC), dodecyldimethylbenzylammonium chloride (DDBAC), or didodecyldimethylammonium chloride (DDDAC) as the collector has been investigated. The results show that the selectivity of these collectors for these three calcareous minerals falls in the order: DDDAC 〉 DDBAC 〉 DTAC. A significantly different flotation response of scheelite compared to the other two calcareous minerals was observed over the pH range from 7 to 8 for DDDAC as the collector. A concentrate containing 41.40% W03 could be produced from a feed mixture containing 23.22% WO3 at the DDDAC concentration of 4.0× 10^-4 mol/L. The WO3 recovery was 92.92% under these conditions. The results of zeta potential measurements suggest that electrostatic interactions are the main forces between DDDAC and the minerals. When the concentration of DDDAC is from 2× 10^-4 to 4×10-3 mol/L large differences in adsorption density, and adsorption kinetics, of DDDAC onto scheelite, calcite, and fluorite provide desirable conditions for achieving high selectivity.
基金National Natural Science Foundation of China (No. 51074184)
文摘One characteristic of electro-flotation is the presence of micro bubbles that are well known for improving the flotation performance of fine particles. An electro-flotation method was studied with fine scheelite and fluorite particles sized into three different fractions. Experiments were performed in a modified Hallimond tube. We investigated the effects of gas holdup, particle size, and different mesh electrode apertures on mineral recovery. Flotation results show that two size fractions show increased flotation recovery as the gas holdup increases. For the sized scheelite and fluorite, the flotation effect is diverse for different sizes of the cathode aperture. Pictures of the bubbles taken by a high speed CCD were used to determine the hydrogen bubble size distribution generated as a function of collector, current density, and electrode size. The diameters of the hydrogen bubbles ranged from 12 to 117μm in alkaline conditions.
基金the National Natural Science Foundation of China (No.50774094)the Ministry of Science and Technology of China (No.2011BAB05B01) for financial support
文摘In the flotation process, bubble is a key factor in studying bubble-particle interaction and fine particle flo- tation. Knowledge on size distribution of bubbles in a flotation system is highly important. In this study, bubble distributions in different reagent concentrations, electrolyte concentrations, cathode apertures, and current densities in electroflotation are determined using a high-speed camera. Average bubble sizes under different conditions are calculated using Image-Pro@ Plus (Media Cybernetics@, MD, USA) and SigmaScan@ Pro (Systat Software, CA, USA) software. Results indicate that the average sizes of bubbles, which were generated through 38, 50, 74, 150, 250, 420, and 1000 μm cathode apertures, are 20.2, 29.5, 44.6, 59.2, 68.7, 78.5, and 88.8 μm, respectively. The optimal current density in electroflotation is 20 A/m2. Reagent and electrolyte concentrations, current density, and cathode aperture are important factors in controlling bubble size and nucleation. These factors also contribute to the control of fine- Particle flotation.
基金supported by the National Natural Science Foundation of China(52374290,52374288 and 52204298)the Innovation-driven Program of Central South University(2023CXQD009)+3 种基金the Hunan Provincial Innovation Foundation for Postgraduate(2024ZZTS0059)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)the National Key Research and Development Program of China(2022YFC3900805-4/7)the Hunan Provincial Education Office Foundation of China(21B0147)。
文摘Captured by the environmental and economic value,the recycling of spent lithium iron phosphate(LFP)batteries has attracted numerous attentions.However,hydrometallurgical method still suffers from complex process,and hydrothermal method is limited by morphology control,ascribed to the strong polarity of water.Herein,supported by ethanol as crystal surface modifier,the regular(010)orientation and short b-axis are effectively tailored for regenerated LFP.As Li-storage cathode,the capacities of as-optimized LFP could reach up to 157.07 mA h g^(-1)at 1 C,and the stable capacity of 150.50 mA h g^(-1)could be remained with retention of 93.48%after 400 cycles at 1 C.Even at 10 C,their capacity could be still kept about 119.3 m A h g^(-1).Assisted by the detail analysis of adsorption energy,the clear growth mechanism is proposed,the lowest adsorbing energy(-4.66 eV)of ethanol on(010)crystal plane renders the ordered growth along(010)crystal plane.Given this,the work is expected to shed light on the tailoring mechanism of internal plane about regenerated materials,whilst providing effective strategies for highperformance regenerated LFP.
基金financially supported by National Natural Science Foundation of China(52374288,52204298)Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2022QNRC001)+2 种基金National Key Research and Development Program of China(2022YFC3900805-4/7)Hunan Provincial Education Office Foundation of China(No.21B0147)Collaborative Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources,Found of State Key Laboratory of Mineral Processing(BGRIMM-KJSKL-2017-13)。
文摘Spent battery recycling has received considerable attention because of its economic and environmental potential.A large amount of retired graphite has been produced as the main electrode material,accompanied by a detailed exploration of the repair mechanism.However,they still suffer from unclear repair mechanisms and physicochemical evolution.In this study,spent graphite was repaired employing three methodologies:pickling-sintering,pyrogenic-recovery,and high-temperature sintering.Owing to the catalytic effect of the metal-based impurities and temperature control,the as-obtained samples displayed an ordered transformation,including the interlayer distance,crystalline degree,and grain size.As anodes of lithium ions batteries,the capacity of repaired samples reached up to 310 mA h g^(-1)above after 300loops at 1.0 C,similar to that of commercial graphite.Meanwhile,benefitting from the effective assembly of carbon atoms in internal structure of graphite at>1400℃,their initial coulombic efficiency were>87%.Even at 2.0 C,the capacity of samples remained approximately 244 mA h g^(-1)after 500 cycles.Detailed electrochemical and kinetic analyses revealed that a low temperature enhanced the isotropy,thereby enhancing the rate properties.Further,economic and environmental analyses revealed that the revenue obtained through suitable pyrogenic-recovering manners was approximately the largest value(5500$t^(-1)).Thus,this study is expected to clarify the in-depth effect of different repair methods on the traits of graphite,while offering all-round evaluations of repaired graphite.
基金provided by the National Natural Science Foundation of China(No.51274255)the Innovation Driven Plan of Central South University(No.2015CX005)+1 种基金the Postdoctoral Research Station of Central South UniversityCo-Innovation Centre for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Effects of collectors(butyl xanthate(BX), O-isopropyl-N-sulfur ethyl carbamate(Z-200) and emulsified kerosene), dereagent(sodium sulfide) and depressant thioglycollic acid(TGA) on the flotation of chalcocite and molybdenite were investigated through flotation. The first principle theory was adopted to understand the difference of their surfaces and reaction between minerals and reagents. Results of flotation tests revealed that selectivity of emulsified kerosene is the best of three collectors in separation of chalcocite and molybdenite, though the others also display excellent collecting properties. Sodium sulfide can effectively remove collectors adsorbed on chalcocite surface, and TGA is an effective depressant of chalcocite at pH 8-9. Through first principle study, molybdenite displays relatively stronger covalence property while bonding interaction between copper atoms in chalcocite enhanced its ionicity. Bonding interaction is weaker in reaction of TGA and molybdenite, so it shows higher hydrophobicity and better flotability. Therefore, TGA is an effective inhibitor in the separation.
基金the National Natural Science Foundation of China(Nos.51604302 and 51574282)the Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources(No.2018TP1002).
文摘In this study, the innovative use of ethylenediamine tetramethylene phosphonic sodium(EDTMPS) as a calcite depressant in scheelite flotation was investigated by flotation experiments, and its selective depression mechanism was revealed by contact angle measurement, FTIR analysis, Zeta potential test and XPS analysis. The flotation experiment results showed that scheelite and calcite could be efficiently separated under the following conditions: pulp p H=9.5, Na OL concentration of 1.5×10^(-4)mol/L, EDTMPS concentration of 3.0×10^(-5)mol/L, a scheelite concentrate with WO3grade of 65.49%, recovery of 83.29%and separation efficiency of 65.29% could be obtained from the artificially mixed minerals. The analysis results of mineral surface properties demonstrated that EDTMPS was strongly adsorbed onto the calcite surface through the reaction between the phosphonate group and the calcium ions, which hindered Na OL adsorption and increased the hydrophilicity of calcite. However, EDTMPS had weak adsorption strength on the scheelite surface, which didn’t affect further adsorption of Na OL, hence, the scheelite remained hydrophobic. Consequently, the selective adsorption of EDTMPS on the two minerals’ surfaces increased a difference in wettability and thus enabling them to be separated by flotation. Finally, the mechanism model of this flotation separation process was established.
基金This work was supported by the National Natural Science Foun-dation of China(No.52174273)the Basic Science Center Project for National Natural Science Foundation of China(No.72088101)+1 种基金the Postdoctoral Science Foundation of China(No.2021TQ0370)the Science and Technology Innovation Program of Hunan Pro-vince(No.2021RC2003).
文摘Coal fly ash is a typical secondary aluminum/silicon resource.The preparation of zeolite-type absorbent is a potential way for its value-added utilization,while the purity and adsorption property of zeolite are limited due to the occurrence of side reactions in the synthesis process.In this study,a designated composite consisted of crystalline zeolites and amorphous calcium silicate hydrate was selected,which was direct synthesized from fly ash under conditions of a Ca/Si molar ratio of 0.8,an initial NaOH concentration of 0.5 mol/L,a hydrothermal temperature of 170℃and a liquid–solid ratio of 15 mL/g.The results indicated that this composite had superior adsorption property for a variety of heavy metals,which was based on the exchange of calcium and sodium ions in zeolites and calcium silicate hydrate.Its adsorption capacities for Pb^(2+),Ni^(2+),Cd^(2+),Zn^(2+),Cu^(2+)and Cr^(3+)attained 409.4,222.4,147.5,93.2,101.1 and 157.0 mg/g,respectively,in single solution with a pH of 4.5.After regulating the synthesis conditions,the transformation of amorphous calcium silicate hydrate into crystallized tobermorite weakened the adsorption capacity of the composite.Besides,due to the competitive adsorption in a multiple ions solution,the adsorption capacities for these heavy metals had a reduction.
基金supported by the Australian Research Council(ARC)Discovery Project(DP220101139)Dr.Wei Wei acknowledges the support of the Australian Research Council(ARC)through Project DE220100530.
文摘Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management.Recently,electrocatalytically converting polyethylene terephthalate(PET)into formate and hydrogen has aroused great interest,while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol(PET monomer)oxidation reaction(EGOR)remains a challenge.Herein,a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy.Benefiting from the interconnected ultrathin nanosheet architecture,dual dopants induced upshifting d band centre and facilitated in situ structural reconstruction,the Co and Cl co-doped Ni_(3)S_(2)(Co,Cl-NiS)outperforms the singledoped and undoped analogues for EGOR.The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency(>92%)and selectivity(>91%)at high current densities(>400 mA cm^(−2)).Besides producing formate,the bifunctional Co,Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h^(−1)in 2 M KOH,at 1.7 V.This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes,but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.
基金financial supports from the Key Program for International S&T Cooperation Projects of China (No. 2021YFE0106800)the National Natural Science Foundation of China (No. U2067201)+3 种基金the Leading Talents of S & T Innovation of Hunan Province, China (No. 2021RC4002)the Science Fund for Distinguished Young Scholars of Hunan Province, China (No. 2020JJ2044)the Key Research and Development Program of Hunan Province, China (No. 2021SK2043)the National 111 Project, China (No. B14034)。
文摘Chalcopyrite is the main Cu-containing mineral and cannot be separated well from pyrite using traditional xanthate collectors with large amounts of lime depressant, resulting in difficulties of the tailing treatment and associated precious metals recovery. Therefore, in this study, the green and odourless ethylenediamine tetramethylenephosphonic acid(EDTMPA) was introduced as a novel chalcopyrite collector. Flotation results from the binary mineral mixture and real ore demonstrated that EDTMPA could realize the selective separation of chalcopyrite from pyrite relative to ethyl xanthate(EX) without any depressants within the wide p H range of 6.0–11.0, and might replace the traditional high-alkaline lime process. Electrochemical and Fourier transform infrared spectra measurements indicated that the difference in adsorption performance of EDTMPA on chalcopyrite and pyrite was larger than that of EX, suggesting a better selectivity for EDTMPA. Density functional theory calculations demonstrated that there were stronger chemical bonds between P—O groups of EDTMPA and the Fe/Cu atoms on chalcopyrite in the form of a stable six-membered ring. Crystal chemistry calculations further revealed that the activity of metal atoms of chalcopyrite was higher than that of pyrite. Therefore, these basic theoretical results and practical application provide a guidance for the industrial application of EDTMPA in chalcopyrite flotation.
基金financially supported by National National Key Research and Development Program of China (2019YFC1907801, 2018YFC1900305, 2018YFC1901601, 2018YFC1901602)the Natural Science Foundation of China (52004334, 51622406, 51634009 and U1704252)+4 种基金National 111 Project (No. B14034)the National Key R&D Program of China (2018YFC1901901)the Collab-orative Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources, Found of State Key Laboratory of Mineral Processing (BGRIMM-KJSKL-2017-13)the Fundamental Research Funds for the Central Universities of Central South University (2019zzts1712020zzts203)the Hunan Provincial Innovation Foundation for Postgraduate (CX20190227)。
文摘Despite the intriguing merits of lithium-sulfur(Li-S) systems, they still suffer from the notorious‘‘shuttling-effect" of polysulfides. Herein, carbon materials with rational tailoring of morphology and pores were designed for strong loading/adsorption with the controlling of energy-storage ability.Through rational tailoring, it is strongly verified that such engineering of evolutions result in variational of sulfur immobilization in the obtained carbon. As expected, the targeted sample delivers a stable capacity of 925 m Ah g^(-1) after 100 loops. Supporting by the "cutting-off" manners, it is disclosed that mesopores in carbon possess more fascinated traits than micro/macropores in improving the utilization of sulfur and restraining Li_(2)S_x(4≤x≤8). Moreover, the long-chain polysulfide could be further consolidated by auto-doping oxygen groups. Supported by in-depth kinetic analysis, it is confirmed that the kinetics of ion/e-transfer during charging and discharging could be accelerated by mesopores, especially in stages of the formation of solid S_(8) and Li_(2)S, further improving the capacity of ion-storage in Li-S battery. Given this, the elaborate study provide significant insights into the effect of pore structure on kinetic performance about Li-storage behaviors in Li-S battery, and give guidance for improving sulfur immobilization.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(No.52174272)the Joint Funds of the National Natural Science Foundation of China(No.U1704252)+1 种基金the Fundamental Research Funds for the Central Universities of Central South University(Nos.2021zzts0306 and 2021zzts0896)the Hunan Provincial Natural Science Foundation of China(No.2020JJ5736).
文摘Organic depressants have low selectivity in separating molybdenite and talc because their metal sites lack activity for organics chemisorption.In this study,surface modification by copper sulfate was used to induce the differential adsorption of pectin onto molybdenite and talc surfaces for enhanced flotation separation.Contact-angle experiments,scanning electron microscopy,adsorption measurements,timeof-flight secondary-ion mass spectrometry,and X-ray photoelectron spectroscopy analyses were conducted to reveal the interaction mechanism.Results illustrated that molybdenite and talc could not be separated using pectin alone,while molybdenite was selectively depressed after surface modification by copper sulfate and this effect was strengthened under alkaline conditions.Metal sites(Mg,Si and Mo)of talc and molybdenite themselves were unable to react with pectin,whereas Cu+would deposit and further function as active site for pectin chemisorption after surface modification.However,the quantity of deposited Cu sites dropped on talc surface and increased on molybdenite surface with increased pH,and the Mo atoms of molybdenite crystal were activated to take part in pectin chemisorption.Therefore,more pectin was adhered on molybdenite surface,which imparted molybdenite stronger wettability.Herein,surface-modification through metal ions can enable the differential adsorption of organic depressants and enhance the flotation separation of minerals.