Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examin...Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.展开更多
Recently,multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials.Nevertheless,excessive stack and agglomeration for low-dimension carbon nanomaterials inducing imped...Recently,multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials.Nevertheless,excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges.Herein,the delicate“3D helix-2D sheet-1D fiber-0D dot”hierarchical aerogels have been successfully synthesized,for the first time,by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method.Particularly,the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils,which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties.Moreover,by adjusting the content of 0D core-shell structured particles and the parameters for growth of the 1D carbon nanofibers,tunable electromagnetic properties and excellent impedance matching are achieved,which plays a vital role in the microwave absorption performance.As expected,the optimized aerogels harvest excellent performance,including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness.This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures,which holds great application potential for electromagnetic wave attenuation.展开更多
Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different method...Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different methods such as the method of modulating the trench depth,the method of introducing dielectric layer and p-type inversion region to improve the width of depletion region(W).It is observed that the intensity of electric field can be modulated by scaling the trench depth.On the other hand,the electron blocking region is formed in the detector enveloped with a dielectric layer.Furthermore,the introducing of p-type inversion region produces new p/n junction,which not only promotes the further expansion of the depletion region but also reduces the intensity of electric field produced by main junction.It can be realized that all these methods can considerably enhance the working voltage as well as W.Of them,the improvement on W of GaN-MSND with the p-type inversion region is the most significant and the value of W could reach 12.8μm when the carrier concentration of p-type inversion region is 10^17 cm^-3.Consequently,the value of W is observed to improve 200%for the designed GaN-MSND as compared with that without additional design.This work ensures to the researchers and scientific community the fabrication of GaN-MSND having superior detection limit in the field of intense radiation.展开更多
A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultra...A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.展开更多
High-purity(99%)carbon nanocoils(CNCs)have been synthesized by using porousα-Fe2O3/SnO2 catalyst.The yield of CNCs reaches 9,098%after a 6 h growth.This value is much higher than the previously reported data,indicati...High-purity(99%)carbon nanocoils(CNCs)have been synthesized by using porousα-Fe2O3/SnO2 catalyst.The yield of CNCs reaches 9,098%after a 6 h growth.This value is much higher than the previously reported data,indicating that this method is promising to synthesize high-purity CNCs on a large scale.It is considered that an appropriate proportion of Fe and Sn,proper particle size distribution,and a loose-porous aggregate structure of the catalyst are the key points to the high-purity growth of CNCs.Benefiting from the high-purity preparation,a CNC Buckypaper was successfully prepared and the electrical,mechanical,and electrochemical properties were investigated comprehensively.Furthermore,as one of the practical applications,the CNC Buckypaper was successfully utilized as an efficient adsorbent for the removal of methylene blue dye from wastewater with an adsorption efficiency of 90.9%.This study provides a facile and economical route for preparing high-purity CNCs,which is suitable for large-quantity production.Furthermore,the fabrication of macroscopic CNC Buckypaper provides promising alternative of adsorbent or other practical applications.展开更多
Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and ...Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.展开更多
Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and ...Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500 ℃, the two nickel silicides (i.e., Ni31Sil2 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Sil2 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600 ℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.展开更多
For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To...For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance (Rs) on high-frequency (SMHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the CHF-CLF capacitance and the conductance method are 2 ×1012 e V-1 cm-2 and 0.94 × 1012 eV-1 cm-2, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN.展开更多
Triethylamine,a crucial industrial raw material,poses significant threats to both the ecosystem and human health.However,detecting lower concentrations of TEA remains an arduous task.In this study,we report the facile...Triethylamine,a crucial industrial raw material,poses significant threats to both the ecosystem and human health.However,detecting lower concentrations of TEA remains an arduous task.In this study,we report the facile hydrothermal and ultrasonic treatment synthesis of 2D SnSe_(2)micro-flower modified with 0D In_(2)O_(3)nanoparticles to form SnSe_(2)/In_(2)O_(3)heterojunctions for the first time.The SnSe_(2)/In_(2)O_(3)sensor has a response value of 4.86 for 10 ppm TEA gas at 120C,with response and recovery times of 18 s and 79 s respectively,and detection limits as low as 100 ppb.In addition,the SnSe_(2)/In_(2)O_(3)sensor is essentially unaffected by humidity in the 30%RH to 60%RH range,and the SnSe_(2)/In_(2)O_(3)sensor response value decreases slightly in the 70%RH to 97%RH range,demonstrating excellent humidity tolerance.More importantly,the sensor maintained excellent cyclicstability performance during a four-month cyclic stability test.The improved gas-sensitive performance can be attributed to the large number of n-n heterojunctions in the SnSe_(2)/In_(2)O_(3)material,which enhances the interfacial charge transfer,as well as the active-sites on the material surface.This work serves as a valuable complement to the TEA gas sensor and holds significant potential for detecting low concentrations of TEA at low temperatures in environmental sensing applications.展开更多
In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The exper...In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.展开更多
For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive ...For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive properties of PseEMs remains lacking.Here,we demonstrate a universal chargecompensating strategy to improve the charge-storage capability of PseEMs intrinsically:ⅰ) in the electrolyte with anion as charge carriers(such as OH-),reducing the multivalent cations of PseEMs into lower valences could create more reversible low-to-high valence redox cou ples to promote the intercalation of the anions;ⅱ) in the electrolytes with cation as charge carriers(such as H^(+),Li^(+),Na^(+)),oxidizing the multivalent cations of PseEMs into higher valences could introduce more reversible high-to-low valence redox couples to promote the intercalation of the cations.And we demonstrated that the improved intrinsic charge-storage capability for PseEMs originates from the increased Faradaic charge storage sites.展开更多
基金supported by the National Natural Science Foundation of China(No.12175283)Youth Innovation Promotion Association of Chinese Academy of Sciences(2020410)Advanced Energy Science and Technology Guangdong Laboratory(HND20TDSPCD,HND22PTDZD).
文摘Growth of high-quality Nb_(3)Sn thin films for superconducting radiofrequency(SRF)applications using the vapor diffusion method requires a uniform distribution of tin nuclei on the niobium(Nb)surface.This study examines the mechanism underlying the observed non-uniform distribution of tin nuclei with tin chloride SnCl_(2).Electron backscatter diffraction(EBSD)analysis was used to examine the correlation between the nucleation behavior and orientation of niobium grains in the substrate.The findings of the density functional theory(DFT)simulation are in good agreement with the experimental results,showing that the non-uniform distribution of tin nuclei is the result of the adsorption energy of SnCl_(2)molecules by varied niobium grain orientations.Further analysis indicated that the surface roughness and grain size of niobium also played significant roles in the nucleation behavior.This study provides valuable insights into enhancing the surface pretreatment of niobium substrates during the growth of Nb_(3)Sn thin films using the vapor diffusion method.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51972039,51803018,and 51661145025)LiaoNing Revitalization Talents Program(No.XLYC1902122).
文摘Recently,multilevel structural carbon aerogels are deemed as attractive candidates for microwave absorbing materials.Nevertheless,excessive stack and agglomeration for low-dimension carbon nanomaterials inducing impedance mismatch are significant challenges.Herein,the delicate“3D helix-2D sheet-1D fiber-0D dot”hierarchical aerogels have been successfully synthesized,for the first time,by sequential processes of hydrothermal self-assembly and in-situ chemical vapor deposition method.Particularly,the graphene sheets are uniformly intercalated by 3D helical carbon nanocoils,which give a feasible solution to the mentioned problem and endows the as-obtained aerogel with abundant porous structures and better dielectric properties.Moreover,by adjusting the content of 0D core-shell structured particles and the parameters for growth of the 1D carbon nanofibers,tunable electromagnetic properties and excellent impedance matching are achieved,which plays a vital role in the microwave absorption performance.As expected,the optimized aerogels harvest excellent performance,including broad effective bandwidth and strong reflection loss at low filling ratio and thin thickness.This work gives valuable guidance and inspiration for the design of hierarchical materials comprised of dimensional gradient structures,which holds great application potential for electromagnetic wave attenuation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675198,11875097,11975257,61774072,61574026,and 61971090)the National Key Research and Development Program of China(Grant Nos.2016YFB0400600 and2016YFB0400601)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.DUT19LK45)the China Postdoctoral Science Foundation(Grant No.2016M591434)the Science and Technology Plan of Dalian City,China(Grant No.2018J12GX060).
文摘Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different methods such as the method of modulating the trench depth,the method of introducing dielectric layer and p-type inversion region to improve the width of depletion region(W).It is observed that the intensity of electric field can be modulated by scaling the trench depth.On the other hand,the electron blocking region is formed in the detector enveloped with a dielectric layer.Furthermore,the introducing of p-type inversion region produces new p/n junction,which not only promotes the further expansion of the depletion region but also reduces the intensity of electric field produced by main junction.It can be realized that all these methods can considerably enhance the working voltage as well as W.Of them,the improvement on W of GaN-MSND with the p-type inversion region is the most significant and the value of W could reach 12.8μm when the carrier concentration of p-type inversion region is 10^17 cm^-3.Consequently,the value of W is observed to improve 200%for the designed GaN-MSND as compared with that without additional design.This work ensures to the researchers and scientific community the fabrication of GaN-MSND having superior detection limit in the field of intense radiation.
基金Project supported by National Key Research and Development Plan of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)the National Natural Science Foundation of China(Grant Nos.61574026,11675198,61774072,and 11405017)+2 种基金the Natural Science Foundation of Liaoning Province,China(Grant Nos.201602453 and 201602176)China Postdoctoral Science Foundation Funded Project(Grant No.2016M591434)the Dalian Science and Technology Innovation Fund(Grant No.2018J12GX060)
文摘A solar-blind photodetector is fabricated on single crystal Ga_2O_3 based on vertical structure Schottky barrier diode. A Cu Schottky contact electrode is prepared in a honeycomb porous structure to increase the ultraviolet(UV) transmittance.The quantum efficiency is about 400% at 42 V. The Ga_2O_3 photodetector shows a sharp cutoff wavelength at 259 nm with high solar-blind/visible(= 3213) and solar-blind/UV(= 834) rejection ratio. Time-resolved photoresponse of the photodetector is investigated at 253-nm illumination from room temperature(RT) to 85.8℃. The photodetector maintains a high reversibility and response speed, even at high temperatures.
基金financially supported by the National Natural Science Foundation of China(Nos.51661145025,51972039,and 51803018)
文摘High-purity(99%)carbon nanocoils(CNCs)have been synthesized by using porousα-Fe2O3/SnO2 catalyst.The yield of CNCs reaches 9,098%after a 6 h growth.This value is much higher than the previously reported data,indicating that this method is promising to synthesize high-purity CNCs on a large scale.It is considered that an appropriate proportion of Fe and Sn,proper particle size distribution,and a loose-porous aggregate structure of the catalyst are the key points to the high-purity growth of CNCs.Benefiting from the high-purity preparation,a CNC Buckypaper was successfully prepared and the electrical,mechanical,and electrochemical properties were investigated comprehensively.Furthermore,as one of the practical applications,the CNC Buckypaper was successfully utilized as an efficient adsorbent for the removal of methylene blue dye from wastewater with an adsorption efficiency of 90.9%.This study provides a facile and economical route for preparing high-purity CNCs,which is suitable for large-quantity production.Furthermore,the fabrication of macroscopic CNC Buckypaper provides promising alternative of adsorbent or other practical applications.
基金Project supported by the National Key Research Program of China(Grant Nos.2018YFB1500500 and 2018YFB1500200)the National Natural Science Foundation of China(Grant Nos.51602340,51702355,and 61674167)JKW Project,China(Grant No.31512060106)
文摘Interdigitated back contact silicon hetero-junction(IBC-SHJ) solar cells exhibit excellent performance owing to the IBC and SHJ structures.The front surface field(FSF) layer composed of electric field passivation and chemical passivation has been proved to play an important role in IBC-SHJ solar cells.The electric field passivated layer n^+-a-Si: H, an n-type Si alloy with carbon or oxygen in amorphous phase, is simulated in this study to investigate its effect on IBC-SHJ.It is indicated that the n^+-a-Si: H layer with wider band gap can reduce the light absorption on the front side efficaciously,which hinders the surface recombination of photo-generated carriers and thus contributes to the improvement of the short circuit current density Jsc.The highly doped n^+-a-Si: H can result in the remakable energy band bending, which makes it outstanding in the field passivation, while it makes little contribution to the chemical passivation.It is noteworthy that when the electric field intensity exceeds 1.3 × 10^5 V/cm, the efficiency decrease caused by the inferior chemical passivation is only 0.16%.In this study, the IBC-SHJ solar cell with a front n^+-a-Si: H field passivation layer is simulated, which shows the high efficiency of 26% in spite of the inferior chemical passivation on the front surface.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675198,61574026,and 11405017)the National Key Research and Development Program of China(Grant Nos.2016YFB0400600 and 2016YFB0400601)+1 种基金the Natural Science Foundation of Liaoning Province of China(Grant Nos.201602453 and 201602176)the China Postdoctoral Science Foundation(Grant No.2016M591434)
文摘Au/Ni/n-type 4H-SiC Schottky alpha particle detectors are fabricated and annealed at temperatures between 400℃ and 700 ℃ to investigate the effects of thermal stability of the Schottky contact on the structural and electrical properties of the detectors. At the annealing temperature of 500 ℃, the two nickel silicides (i.e., Ni31Sil2 and Ni2Si) are formed at the interface and result in the formation of an inhomogeneous Schottky barrier. By increasing the annealing temperature, the Ni31Sil2 transforms into the more stable Ni2Si. The structural evolution of the Schottky contact directly affects the electrical properties and alpha particle energy resolutions of the detectors. A better energy resolution of 2.60% is obtained for 5.48-MeV alpha particles with the detector after being annealed at 600 ℃. As a result, the Au/Ni/n-type 4H-SiC Schottky detector shows a good performance after thermal treatment at temperatures up to 700℃.
基金Supported by the Natural Science Foundation of Jiangxi Province under Grant No 20133ACB20005the Key Program of National Natural Science Foundation of China under Grant No 41330318+3 种基金the Key Program of Science and Technology Research of Ministry of Education under Grant No NRE1515the Foundation of Training Academic and Technical Leaders for Main Majors of Jiangxi Province under Grant No 20142BCB22006the Research Foundation of Education Bureau of Jiangxi Province under Grant No GJJ14501the Engineering Research Center of Nuclear Technology Application(East China Institute of Technology)Ministry of Education under Grant NoHJSJYB2016-1
文摘For the frequency range of I kHz-lOMHz, the interface state density of Ni contacts on p-GaN is studied using capacitance-voltage (C-V) and conductance-frequency-voltage (G-f-V) measurements at room temperature. To obtain the real capacitance and interface state density of the Ni/p-GaN structures, the effects of the series resistance (Rs) on high-frequency (SMHz) capacitance values measured at a reverse and a forward bias are investigated. The mean interface state densities obtained from the CHF-CLF capacitance and the conductance method are 2 ×1012 e V-1 cm-2 and 0.94 × 1012 eV-1 cm-2, respectively. Furthermore, the interface state density derived from the conductance method is higher than that reported from the Ni/n-GaN in the literature, which is ascribed to a poor crystal quality and to a large defect density of the Mg-doped p-GaN.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.12075172 and 12375288)National Key R&D Program of China(Grant No.2019YFA0210003)Wuhan University for Field Emission Transmission Electron Microscope(FETEM,JEOL JEM-F200).
文摘Triethylamine,a crucial industrial raw material,poses significant threats to both the ecosystem and human health.However,detecting lower concentrations of TEA remains an arduous task.In this study,we report the facile hydrothermal and ultrasonic treatment synthesis of 2D SnSe_(2)micro-flower modified with 0D In_(2)O_(3)nanoparticles to form SnSe_(2)/In_(2)O_(3)heterojunctions for the first time.The SnSe_(2)/In_(2)O_(3)sensor has a response value of 4.86 for 10 ppm TEA gas at 120C,with response and recovery times of 18 s and 79 s respectively,and detection limits as low as 100 ppb.In addition,the SnSe_(2)/In_(2)O_(3)sensor is essentially unaffected by humidity in the 30%RH to 60%RH range,and the SnSe_(2)/In_(2)O_(3)sensor response value decreases slightly in the 70%RH to 97%RH range,demonstrating excellent humidity tolerance.More importantly,the sensor maintained excellent cyclicstability performance during a four-month cyclic stability test.The improved gas-sensitive performance can be attributed to the large number of n-n heterojunctions in the SnSe_(2)/In_(2)O_(3)material,which enhances the interfacial charge transfer,as well as the active-sites on the material surface.This work serves as a valuable complement to the TEA gas sensor and holds significant potential for detecting low concentrations of TEA at low temperatures in environmental sensing applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574026 and 11405017)the Liaoning Provincial Natural Science Foundation,China(Grant No.201602453)
文摘In this paper,ultra-long and large-scaled ZnO microwire arrays are grown by the chemical vapor deposition method,and a single ZnO microwire-based non-balanced electric bridge ethanol gas sensor is fabricated.The experimental results show that the gas sensor has good repeatability,high response rate,short response,and recovery time at room temperature(25℃).The response rate of the gas sensor exposed to 90-ppm ethanol is about 93%,with a response time and recovery time are 0.3 s and 0.7 s respectively.As a contrast,the traditional resistive gas sensor of a single ZnO microwire shows very small gas response rate.Therefore,ethanol gas sensor based on non-balanced electric bridge can obviously enhance gas sensing characteristics,which provides a feasible method of developing the high performance ZnO-based gas sensor.
基金supported by the National Natural Science Foundation of China(51972146,52072150)。
文摘For pseudocapacitive electrode materials(PseEMs),despite much progress having been made in achieving both high power density and high energy density,a general strategy to guide the enhancement of intrinsic capacitive properties of PseEMs remains lacking.Here,we demonstrate a universal chargecompensating strategy to improve the charge-storage capability of PseEMs intrinsically:ⅰ) in the electrolyte with anion as charge carriers(such as OH-),reducing the multivalent cations of PseEMs into lower valences could create more reversible low-to-high valence redox cou ples to promote the intercalation of the anions;ⅱ) in the electrolytes with cation as charge carriers(such as H^(+),Li^(+),Na^(+)),oxidizing the multivalent cations of PseEMs into higher valences could introduce more reversible high-to-low valence redox couples to promote the intercalation of the cations.And we demonstrated that the improved intrinsic charge-storage capability for PseEMs originates from the increased Faradaic charge storage sites.