With the rapid development of data applications in the scene of Industrial Internet of Things(IIoT),how to schedule resources in IIoT environment has become an urgent problem to be solved.Due to benefit of its strong ...With the rapid development of data applications in the scene of Industrial Internet of Things(IIoT),how to schedule resources in IIoT environment has become an urgent problem to be solved.Due to benefit of its strong scalability and compatibility,Kubernetes has been applied to resource scheduling in IIoT scenarios.However,the limited types of resources,the default scheduling scoring strategy,and the lack of delay control module limit its resource scheduling performance.To address these problems,this paper proposes a multi-resource scheduling(MRS)scheme of Kubernetes for IIoT.The MRS scheme dynamically balances resource utilization by taking both requirements of tasks and the current system state into consideration.Furthermore,the experiments demonstrate the effectiveness of the MRS scheme in terms of delay control and resource utilization.展开更多
The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on cov...The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on coverage optimization methods are proposed to improve the control performance of the system and make the state norm of the system converge to zero faster. The coverage optimization problems are constructed based on the measurement of each agent. By solving the coverage optimization problems, the local optimal moving direction of each agent can be obtained. Then the gradient-based agent motion control laws are established. With the indicator function and the surface delta function, this method is generalized to n-dimensional space, and suitable for any sensing region with piecewise smooth boundaries. The stability and control performance of the system are analyzed. Numerical simulations show the effectiveness of the proposed methods.展开更多
In foggy weather, images of outdoor scene are usually characterized with poor visibility as well as faint color saturation. The degraded hazy images may have substantial negative impact on most computer vision systems...In foggy weather, images of outdoor scene are usually characterized with poor visibility as well as faint color saturation. The degraded hazy images may have substantial negative impact on most computer vision systems. Thus image haze removal is of the practical significance in engineering. This paper proposes a fast and effective single image haze removal algorithm on the basis of the physics imaging model. To extract the global atmospheric light accurately, we exploit multiple prior rules underlying hazy images, and put forward a novel measurement to judge the likelihood that a pixel is regarded as the global atmospheric light. In addition, the rough transmission map is estimated through a multiscale fusion process based on the Laplace pyramid transform, and refined by a total variation model. Experimental results demonstrate the proposed method outperforms most of the state-of-the-art algorithms in terms of the dehazing quality, and achieves a trade-off between the computational efficiency and haze removal capability.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
Current applications,consisting of multiple replicas,are packaged into lightweight containers with their execution dependencies.Considering the dominant impact of distribution efficiency of gigantic images on containe...Current applications,consisting of multiple replicas,are packaged into lightweight containers with their execution dependencies.Considering the dominant impact of distribution efficiency of gigantic images on container startup(e.g.,distributed deep learning application),the image“warm-up”technique which prefetches images of these replicas to destination nodes in the cluster is proposed.However,the current image“warm-up”technique solely focuses on identical image distribution,which fails to take effect when distributing different images to destination nodes.To address this problem,this paper proposes Hound,a simple but efficient cluster image distribution system based on Docker.To support diverse image distribution requests of cluster nodes,Hound additionally adopts node-level parallelism(i.e.,downloading images to destination nodes in parallel)to further improve the efficiency of image distribution.The experimental results demonstrate Hound outperforms Docker,kubernetes container runtime interface(CRI-O),and Docker-compose in terms of image distribution performance when cluster nodes request different images.Moreover,the high scalability of Hound is evaluated in the scenario of ten nodes.展开更多
基金This work was supported by the National Natural Science Foundation of China(61872423)the Industry Prospective Primary Research&Development Plan of Jiangsu Province(BE2017111)the Scientific Research Foundation of the Higher Education Institutions of Jiangsu Province(19KJA180006).
文摘With the rapid development of data applications in the scene of Industrial Internet of Things(IIoT),how to schedule resources in IIoT environment has become an urgent problem to be solved.Due to benefit of its strong scalability and compatibility,Kubernetes has been applied to resource scheduling in IIoT scenarios.However,the limited types of resources,the default scheduling scoring strategy,and the lack of delay control module limit its resource scheduling performance.To address these problems,this paper proposes a multi-resource scheduling(MRS)scheme of Kubernetes for IIoT.The MRS scheme dynamically balances resource utilization by taking both requirements of tasks and the current system state into consideration.Furthermore,the experiments demonstrate the effectiveness of the MRS scheme in terms of delay control and resource utilization.
基金supported by the National Natural Science Foundation of China(61807016 61174021)+3 种基金the Fundamental Research Funds for the Central Universities(JUSRP115A28 JUSRP51733B)the 111 Projeet(B12018)the Postgraduate Innovation Project of Jiangsu Province(KYLX151170)
文摘The control problem of a class of parabolic distributed parameter systems (DPSs) is investigated by using mobile agents with capabilities of sensing and actuating. The guidance strategies of mobile agents based on coverage optimization methods are proposed to improve the control performance of the system and make the state norm of the system converge to zero faster. The coverage optimization problems are constructed based on the measurement of each agent. By solving the coverage optimization problems, the local optimal moving direction of each agent can be obtained. Then the gradient-based agent motion control laws are established. With the indicator function and the surface delta function, this method is generalized to n-dimensional space, and suitable for any sensing region with piecewise smooth boundaries. The stability and control performance of the system are analyzed. Numerical simulations show the effectiveness of the proposed methods.
基金supported by the National Natural Science Foundation of China(61571241)the Industry-University-research Prospective Joint Project of Jiangsu Province(BY2014014)+2 种基金the Major Projects of Jiangsu Province University Natural Science Research(15KJA510002)the Jiangsu Province Graduate Research and Innovation Project(CXZZ130476)the Science Research Fund of NUPT(NY215169)
文摘In foggy weather, images of outdoor scene are usually characterized with poor visibility as well as faint color saturation. The degraded hazy images may have substantial negative impact on most computer vision systems. Thus image haze removal is of the practical significance in engineering. This paper proposes a fast and effective single image haze removal algorithm on the basis of the physics imaging model. To extract the global atmospheric light accurately, we exploit multiple prior rules underlying hazy images, and put forward a novel measurement to judge the likelihood that a pixel is regarded as the global atmospheric light. In addition, the rough transmission map is estimated through a multiscale fusion process based on the Laplace pyramid transform, and refined by a total variation model. Experimental results demonstrate the proposed method outperforms most of the state-of-the-art algorithms in terms of the dehazing quality, and achieves a trade-off between the computational efficiency and haze removal capability.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
基金supported by the National Natural Science Foundation of China(61872423)Industry Prospective Primary Research&Development Plan of Jiangsu Province(BE2017111)+1 种基金the Scientific Research Foundation of the Higher Education Institutions of Jiangsu Province(19KJA180006)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0764)。
文摘Current applications,consisting of multiple replicas,are packaged into lightweight containers with their execution dependencies.Considering the dominant impact of distribution efficiency of gigantic images on container startup(e.g.,distributed deep learning application),the image“warm-up”technique which prefetches images of these replicas to destination nodes in the cluster is proposed.However,the current image“warm-up”technique solely focuses on identical image distribution,which fails to take effect when distributing different images to destination nodes.To address this problem,this paper proposes Hound,a simple but efficient cluster image distribution system based on Docker.To support diverse image distribution requests of cluster nodes,Hound additionally adopts node-level parallelism(i.e.,downloading images to destination nodes in parallel)to further improve the efficiency of image distribution.The experimental results demonstrate Hound outperforms Docker,kubernetes container runtime interface(CRI-O),and Docker-compose in terms of image distribution performance when cluster nodes request different images.Moreover,the high scalability of Hound is evaluated in the scenario of ten nodes.