Background Cardiovascular diseases are closely associated with atherosclerotic plaque development and rupture.Traditional medical imaging techniques such as magnetic resonance imaging(MRI)and intravascular ultrasound(...Background Cardiovascular diseases are closely associated with atherosclerotic plaque development and rupture.Traditional medical imaging techniques such as magnetic resonance imaging(MRI)and intravascular ultrasound(IVUS)were unable to identify vulnerable plaques due to their limited resolution.Fortunately,optical coherence tomography(OCT)is an advanced intravascular imaging technique developed in recent years which has high resolution approximately 10 microns and could provide more accurate morphology of coronary plaque.In particular,it has the ability to identify plaques with fibrous cap thickness<65μm,an accepted threshold value for vulnerable plaques.However,segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective.To overcome time consumption,several methodologies have been proposed for automatic segmentation of OCT images but most of these methods were still limited by intricate image preprocessing and expensive computation.In this research,two automatic segmentation methods for intracoronary OCT image based on support vector machine(SVM)and convolutional neural network(CNN)were performed to identify the plaque region and characterize plaque components.Methods In vivo IVUS and OCT coronary plaque data from 5 patients were acquired at Emory University with patient’s consent obtained.OCT were obtained from ILUMIEN OPTIS System(St.Jude,Minnesota,MN).The OCT catheter was traversed to the segment of interest and the catheter pullback was limited at a rate of 20 mm/sec.Following the OCT image acquisition,the IVUS catheter was traversed distally though the artery to the same coronary segment(Volcano Therapeutics,Rancho Cordova)and the catheter pullback speed was at a standard rate of 0.5 mm/sec.Seventy-seven matched IVUS and OCT slices with good image quality and lipid cores were selected for our segmentation study.Manual OCT segmentation was performed by experts and used as gold standard in the automatic segmentations.VH-IVUS was used as references and guide by the experts in the manual segmentation process.Three plaque component tissue classes were identified from OCT images in this work:lipid tissue(LT),fibrous tissue(FT)and background(BG).Procedures using two machine learning methods(CNN and SVM)were developed to segment OCT images,respectively.For CNN method,the U-Net architecture was selected due to its good performance in very different biomedical segmentation and very few annotated images.For SVM method,local binary patterns(LBPs),gray level co-occurrence matrices(GLCMs)which contains contrast,correlation,energy and homogeneity,entropy and mean value were calculated as features and assembled to feed SVM classifier.The accuracies of two segmentation methods were evaluated and compared using the OCT dataset.Segmentation accuracy is defined as the ratio of the number of pixels correctly classified over the total number of pixels.Results The overall classification accuracy based CNN method reached 95.8%,and the accuracies for LT,FT and BG were 86.8%,83.4%,and 98.2%,respectively.The overall classification accuracy based SVM was 71.9%,and per-class accuracy for LT,FT and BG was 75.4%,78.3%,and67.0%,respectively.Conclusions The two methods proposed can automatically identify plaque region and characterize plaque compositions for OCT images and potentially reduce the time spent by doctors in segmenting and evaluating coronary plaque OCT images.CNN provided better segmentation accuracies compared to those achieved by SVM.展开更多
基金supported in part by National Sciences Foundation of China grant ( 11672001)Jiangsu Province Science and Technology Agency grant ( BE2016785)
文摘Background Cardiovascular diseases are closely associated with atherosclerotic plaque development and rupture.Traditional medical imaging techniques such as magnetic resonance imaging(MRI)and intravascular ultrasound(IVUS)were unable to identify vulnerable plaques due to their limited resolution.Fortunately,optical coherence tomography(OCT)is an advanced intravascular imaging technique developed in recent years which has high resolution approximately 10 microns and could provide more accurate morphology of coronary plaque.In particular,it has the ability to identify plaques with fibrous cap thickness<65μm,an accepted threshold value for vulnerable plaques.However,segmentation of OCT images in clinic is still mainly performed manually by physicians which is time consuming and subjective.To overcome time consumption,several methodologies have been proposed for automatic segmentation of OCT images but most of these methods were still limited by intricate image preprocessing and expensive computation.In this research,two automatic segmentation methods for intracoronary OCT image based on support vector machine(SVM)and convolutional neural network(CNN)were performed to identify the plaque region and characterize plaque components.Methods In vivo IVUS and OCT coronary plaque data from 5 patients were acquired at Emory University with patient’s consent obtained.OCT were obtained from ILUMIEN OPTIS System(St.Jude,Minnesota,MN).The OCT catheter was traversed to the segment of interest and the catheter pullback was limited at a rate of 20 mm/sec.Following the OCT image acquisition,the IVUS catheter was traversed distally though the artery to the same coronary segment(Volcano Therapeutics,Rancho Cordova)and the catheter pullback speed was at a standard rate of 0.5 mm/sec.Seventy-seven matched IVUS and OCT slices with good image quality and lipid cores were selected for our segmentation study.Manual OCT segmentation was performed by experts and used as gold standard in the automatic segmentations.VH-IVUS was used as references and guide by the experts in the manual segmentation process.Three plaque component tissue classes were identified from OCT images in this work:lipid tissue(LT),fibrous tissue(FT)and background(BG).Procedures using two machine learning methods(CNN and SVM)were developed to segment OCT images,respectively.For CNN method,the U-Net architecture was selected due to its good performance in very different biomedical segmentation and very few annotated images.For SVM method,local binary patterns(LBPs),gray level co-occurrence matrices(GLCMs)which contains contrast,correlation,energy and homogeneity,entropy and mean value were calculated as features and assembled to feed SVM classifier.The accuracies of two segmentation methods were evaluated and compared using the OCT dataset.Segmentation accuracy is defined as the ratio of the number of pixels correctly classified over the total number of pixels.Results The overall classification accuracy based CNN method reached 95.8%,and the accuracies for LT,FT and BG were 86.8%,83.4%,and 98.2%,respectively.The overall classification accuracy based SVM was 71.9%,and per-class accuracy for LT,FT and BG was 75.4%,78.3%,and67.0%,respectively.Conclusions The two methods proposed can automatically identify plaque region and characterize plaque compositions for OCT images and potentially reduce the time spent by doctors in segmenting and evaluating coronary plaque OCT images.CNN provided better segmentation accuracies compared to those achieved by SVM.