期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Utilizing electronic assisted enhancement:An innovative approach for studying the thermal decomposition and combustion of ionic liquids
1
作者 Cailing Zhang Yutao Wang +5 位作者 Baiquan Chen Zhenguo Pang Hongqi Nie Quan Zhu Peijin Liu Wei He 《Defence Technology(防务技术)》 2025年第2期179-189,共11页
Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This charact... Flammable ionic liquids exhibit high conductivity and a broad electrochemical window,enabling the generation of combustible gases for combustion via electrochemical decomposition and thermal decomposition.This characteristic holds significant implications in the realm of novel satellite propulsion.Introducing a fraction of the electrical energy into energetic ionic liquid fuels,the thermal decomposition process is facilitated by reducing the apparent activation energy required,and electrical energy can trigger the electrochemical decomposition of ionic liquids,presenting a promising approach to enhance combustion efficiency and energy release.This study applied an external voltage during the thermal decomposition of 1-ethyl-3-methylimidazole nitrate([EMIm]NO_(3)),revealing the effective alteration of the activation energy of[EMIm]NO_(3).The pyrolysis,electrochemical decomposition,and electron assisted enhancement products were identified through Thermogravimetry-Differential scanning calorimetry-Fourier transform infrared-Mass spectrometry(TG-DSC-FTIR-MS)and gas chromatography(GC)analyses,elucidating the degradation mechanism of[EMIm]NO_(3).Furthermore,an external voltage was introduced during the combustion of[EMIm]NO_(3),demonstrating the impact of voltage on the combustion process. 展开更多
关键词 Flammable ionic liquids Kinetic methods Electron assisted enhanced thermal decomposition Electron assisted enhanced combustion
在线阅读 下载PDF
Hazard evaluation of ignition sensitivity and explosion severity for three typical MH_(2) (M=Mg,Ti,Zr)of energetic materials 被引量:9
2
作者 Xing-liang Wu Sen Xu +5 位作者 Ai-min Pang Wei-guo Cao Da-bin Liu Xin-yu Zhu Fei-yang Xu Xu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1262-1268,共7页
MgH_(2),TiH_(2),and ZrH_(2) are three typical metal hydrides that have been gradually applied to composite explosives and propellants as additives in recent years.To evaluate ignition sensitivity and explosion severit... MgH_(2),TiH_(2),and ZrH_(2) are three typical metal hydrides that have been gradually applied to composite explosives and propellants as additives in recent years.To evaluate ignition sensitivity and explosion severity,the Hartmann device and spherical pressure vessel were used to test ignition energy and explosion pressure,respectively.The results showed that the ignition sensitivity of ZrH_(2),TiH_(2) and MgH_(2) gradually increased.When the concentration of MgH_(2) is 83.0 g/m^(3) in Hartmann device,the ignition energy attained a minimum of 10.0 mJ.The explosion pressure of MgH_(2) were 1.44 times and 1.76 times that of TiH_(2) and ZrH_(2),respectively,and the explosion pressure rising rate were 3.97 times and 9.96 times that of TiH_(2) and ZrH_(2),respectively,through the spherical pressure vessel.It indicated that the reaction reactivity and reaction rate of MgH_(2) were higher than that of TiH_(2) and ZrH_(2).In addition,to conduct in edepth theoretical analysis of ignition sensitivity and explosion severity,gas production and combustion heat per unit mass of ZrH_(2),TiH_(2) and MgH_(2) were tested by mercury manometer and oxygen bomb calorimetry.The experimental results revealed that MgH_(2) had a relatively high gas production per unit mass(5.15 mL/g),while TiH_(2) and ZrH_(2) both had a gas production of less than 2.0 mL/g.Their thermal stability gradually increased,leading to a gradual increase in ignition energy.Furthermore,compared with theoretical combustion heat,the combustion ratio of MgH_(2),TiH_(2) and ZrH_(2) was more than 96.0%,with combustion heat value of 29.96,20.94 and 12.22 MJ/kg,respectively,which was consistent with the explosion pressure and explosion severity test results. 展开更多
关键词 Ignition energy Explosion pressure Reaction activity Combustion heat
在线阅读 下载PDF
Influence of B4C particle size on microstructure and damping capacities of(B_(4)C+Ti)/Mg composites 被引量:5
3
作者 YAO Yan-tao CHEN Li-qing WANG Wen-guang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期648-656,共9页
To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstruct... To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstructure,produced phases and damping capacities of the composites prepared with different particle size of B4C were characterized and analyzed.The results show that the reaction between B4C and Ti tends to be more complete when finer B_(4)C particle was used to prepare the composites.But the microstructure of the as-prepared composites is more homogenous when B4C and Ti have similar particle size.The strain-dependent damping capacities of(B_(4)C+Ti)/Mg composites improve gradually with the increase of strain amplitude,and composites prepared with coarser B4C particles tend to have higher damping capacities.The temperature-dependent damping capacities improve with increasing the measuring temperatures,and the kind of damping capacities of the composites prepared with 5mm B4C are inferior to those of coarser particles.The dominant damping mechanism for the strain-damping capacity is dislocation damping and plastic zone damping,while that for the temperature-damping capacity is interface damping or grain boundary damping. 展开更多
关键词 Mg-matrix composites in situ reactive infiltration particle size MICROSTRUCTURE damping capacity mechanism
在线阅读 下载PDF
A comparative single-pulse shock tube experiment and kinetic modeling study on pyrolysis of cyclohexane,methylcyclohexane and ethylcyclohexane
4
作者 Jin-hu Liang Shu-tong Cao +5 位作者 Fei Li Xiao-liang Li Rui-ning He Xin Bai Quan-De Wang Yang Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期137-148,共12页
The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-... The pyrolysis of cyclohexane,methylcyclohexane,and ethylcyclohexane have been studied behind reflected shock waves at pressures of 5 and10 bar and at temperatures of 930-1550 K for 0.05%fuel diluted by Argon.A single-pulse shock tube(SPST)is used to perform the pyrolysis experiments at reaction times varying from 1.65 to 1.74 ms.Major products are obtained and quantified using gas chromatography analysis.A flame ionization detector and a thermal conductivity detector are used for species identification and quantification.Kinetic modeling has been performed using several detailed and lumped chemical kinetic mechanisms.Differences in modeling results among the kinetic models are described.Reaction path analysis and sensitivity analysis are performed to determine the important reactions controlling fuel pyrolysis and their influence on the predicted concentrations of reactant and product species profiles.The present work provides new fundamental knowledge in understating pyrolysis characteristics of cyclohexane compounds and additional data set for detailed kinetic mechanism development. 展开更多
关键词 CYCLOHEXANE Alkylated cyclohexane Single-pulse shock tube PYROLYSIS Kinetic modeling
在线阅读 下载PDF
Preparation of HMX/TATB spherical composite explosive by droplet microfluidic technology 被引量:10
5
作者 Bidong Wu Jinqiang Zhou +4 位作者 Yunyan Guo Rui Zhu Dong Wang Chongwei An Jingyu Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第3期62-72,共11页
Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres... Polymer bonded explosives(PBXs)have high energy density,excellent mechanical properties and better thermal stability.In this study,droplet microfluidic technology was used to successfully prepare HMX/TATB microspheres.The effects of different binder types and binder concentrations on the morphology of the microspheres were studied,and results proved that NC/GAP(1:4)provides particles a regular spherical morphology and good dispersion.Subsequently,the influence of the concentration of the dispersed phase and the flow rate of the continuous phase on the particle size distribution of the microspheres was fully studied.The microspheres had narrow particle size distribution and high spherical shape.Under optimized process conditions,HMX/TATB microspheres were prepared and compared with the physical mixtures.The X-ray diffraction,differential scanning calorimetry,flow properties,bulk density,and mechanical sensitivity of the samples were also studied.Results showed that the crystal form of the microspheres remains unchanged,and the binder maintains good compatibility with explosives.In addition,the fluidity,bulk density,real density and safety performance of the microspheres are remarkably better than the physical mixture.This study provides a new method for preparing PBX with narrow particle size distribution,high spherical shape,excellent dispersion and high bulk density. 展开更多
关键词 TATB NARROW composite
在线阅读 下载PDF
A novel transient strategy:transient electronics based on energetic materials
6
作者 Yutao Wang Zhongliang Ma +2 位作者 Wei He Yongli Zhang Peijin Liu 《Defence Technology(防务技术)》 2025年第2期111-130,共20页
Transient electronics is a versatile tool that finds applications in various fields,including medical biology,environmental protection,and data information security.In the context of data protection,the traditional pa... Transient electronics is a versatile tool that finds applications in various fields,including medical biology,environmental protection,and data information security.In the context of data protection,the traditional passive degradation transient mode is being replaced by the active destruction mode,which features a short self-destruction time and provides greater resistance to recovery.This article presents an overview of recent progress in transient electronics,assessing the benefits and suitability of varying transient mechanisms.The article also analyses the influence of transient electronics on military security while emphasizing the advantages of implementing energetic materials.Besides,the article introduces energetic transient devices and evaluates their ability to support the autonomous operation of transient electronic devices. 展开更多
关键词 Transient electronics Energetic materials
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部