期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Construction of robust coupling interface between MoS2 and nitrogen doped graphene for high performance sodium ion batteries 被引量:3
1
作者 Yun Qiao Jiawei Wu +7 位作者 Xiaoguang Cheng Yudong Pang Zhansheng Lu Xiangdong Lou Qingling Li Jin Zhao Shuting Yang Yang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期435-442,I0013,共9页
As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and slugg... As a layered inorganic material,MoS2 has recently attracted intensive attention as anode for sodium ion batteries(SIBs).However,this anode is plagued with low electronic conductivity,serious volume expansion and sluggish kinetics,resulting in capacity fading and poor rate performance.Herein,we develop an interface engineering strategy to substantially enhance the sodium storage performance of MoS2 by incorporating layered MoS2 into three dimensional N-doped graphene scaffold.The strong coupling-interface between MoS2 and N-doped graphene scaffold can not only stabilize the MoS2 structure during sodium insertion/extraction processes,but also provide plenty of anchor sites for additional surface sodium storage.The 3D MoS2@N-doped graphene composite as anode for SIBs performs an outstanding specific capacity of 667.3 mA h g^-1 at 0.2 A g^-1,a prolonged stability with a capacity retention of 94.4%after 140cycles and excellent rate capability of 445 mA h g^-1 even at a high rate of 10 A g^-1.We combined experiment and theoretical simulation to further disclose the interaction between MoS2 and N-doped graphene,adsorption and diffusion of sodium on the composite and the corresponding sodium storage mechanism.This study opens a new door to develop high performance SIBs by introducing the interface engineering technique. 展开更多
关键词 Sodium-ion batteries ANODE Interface engineering MOS2 Energy storage
在线阅读 下载PDF
Plasma-facilitated modification of pumpkin vine-based biochar and its application for efficient elimination of uranyl from aqueous solution 被引量:1
2
作者 Jinxin YI Zhipeng HUO +2 位作者 Xiaoli TAN Changlun CHEN Jiaxing LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第9期101-109,共9页
An acrylic modified pumpkin vine-based biochar(p-PVB-PAA) is synthesized by non-thermal plasma-grafting modification of pumpkin vine-based biochar(PVB) for the removal of uranyl from an aqueous solution. Microscopic c... An acrylic modified pumpkin vine-based biochar(p-PVB-PAA) is synthesized by non-thermal plasma-grafting modification of pumpkin vine-based biochar(PVB) for the removal of uranyl from an aqueous solution. Microscopic characterization reveals that compared to PVB the surface of p-PVBPAA has more oxygen-containing functional groups by strong chemical bonding and the specific surface area is increased to 275.3 m^2 g^-1 from 3.8 m^2g^-1. It is found that p-PVB-PAA showed a much higher maximum adsorption capacity for uranyl from aqueous solutions than PVB, which were207.02 mg g^-1 and 67.58 mg g^-1 at pH=5 and 298 K, respectively. Moreover, the adsorption behavior follows a pseudo-second-order kinetics model and the Langmuir adsorption model.Additionally, macroscopic experiments and spectroscopic studies verified that the significantly improved adsorption performance of the p-PVB-PAA is due to surface complexation and electrostatic interactions. Furthermore, the very high removal efficiency and excellent regeneration ability(the percentage of the removal still remained at nearly 90% after five cycles) makes this low-cost, easily obtained, and environmentally friendly material attractive for commercial application. 展开更多
关键词 BIOCHAR MODIFICATION PLASMA treatment adsorption URANYL
在线阅读 下载PDF
Structural,Electrical,and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory
3
作者 陈永昌 霍苗 +5 位作者 刘洋 陈桐 冷成财 李强 孙兆林 宋丽娟 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期132-136,共5页
The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4... The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4.9 V) is found to be in good agreement with experiments. From the analysis of electronic structure, the pure phase Li2MnO3 is insulating, which is indicative of poor electronic-conduction properties. However, further studies of lithium ion diffusion in bulk Li2MnO3 show that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials, lithium can diffuse in a three-dimensional pathway in Li2MnO3, with moderate lithium migration energy barrier ranges from 0.57 to 0.63 e V. 展开更多
关键词 Li Structural Electrical and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory MNO
在线阅读 下载PDF
Preparation of graphene oxides with different sheet sizes by temperature control 被引量:2
4
作者 钱哲 陈亮 +5 位作者 李德远 彭兵权 石国升 徐刚 方海平 吴明红 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期316-320,共5页
The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparatio... The sheet size of a graphene oxide (GO) can greatly influence its electrical, optical, mechanical, electrochemical and catalytic property. It is a key challenge to how to control the sheet size during its preparation in different application fields. According to our previous theoretical calculations of the effect of temperature on the oxidation process of graphene, we use Hummers method to prepare GOs with different sheet sizes by simply controlling the temperature condition in the process of the oxidation reaction of potassium permanganate (KMnO4) with graphene and the dilution process with deionized water. The results detected by transmission electron microscopy (TEM) and atomic force microscopy (AFM) show that the average sizes of GO sheets prepared at different temperatures are about 1 μm and 7 μm respectively. The ultraviolet-visible spectroscopy (UV-vis) shows that lower temperature can lead to smaller oxidation degrees of GO and less oxygen functional groups on the surface. In addition, we prepare GO membranes to test their mechanical strengths by ultrasonic waves, and we find that the strengths of the GO membranes prepared under low temperatures are considerably higher than those prepared under high temperatures, showing the high mechanical strengths of larger GO sheets. Our experimental results testify our previous theoretical calculations. Compared with the traditional centrifugal separation and chemical cutting method, the preparation process of GO by temperature control is simple and low-cost and also enables large-size synthesis. These findings develop a new method to control GO sheet sizes for large-scale potential applications. 展开更多
关键词 graphene oxide sheet size temperature control degree of oxidation
在线阅读 下载PDF
Metal-organic frameworks based single-atom catalysts for advanced fuel cells and rechargeable batteries 被引量:2
5
作者 Yifei Wu Peng Hu +5 位作者 Fengping Xiao Xiaoting Yu Wenqi Yang Minqi Liang Ziwei Liang Aixin Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期501-534,I0012,共35页
The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.How... The next-generation energy storage systems such as fuel cells,metal-air batteries,and alkali metal(Li,Na)-chalcogen(S,Se)batteries have received increasing attention owing to their high energy density and low cost.However,one of the main obstacles of these systems is the poor reaction kinetics in the involved chemical reactions.Therefore,it is essential to incorporate suitable and efficient catalysts into the cell.These years,single-atom catalysts(SACs)are emerging as a frontier in catalysis due to their maximum atom efficiency and unique reaction selectivity.For SACs fabrication,metal-organic frameworks(MOFs)have been confirmed as promising templates or precursors due to their high metal loadings,structural adjustability,porosity,and tailorable catalytic site.In this review,we summarize effective strategies for fabricating SACs by MOFs with corresponding advanced characterization techniques and illustrate the key role of MOFs-based SACs in these batteries by explaining their reaction mechanisms and challenges.Finally,current applications,prospects,and opportunities for MOFs-based SACs in energy storage systems are discussed. 展开更多
关键词 Metal-organic frameworks Single-atom catalysts Rechargeable batteries ELECTROCATALYSTS Coordination configuration
在线阅读 下载PDF
CH_4-CO_2 reforming to syngas over Pt-CeO_2-ZrO_2/MgO catalysts: Modification of support using ion exchange resin method 被引量:1
6
作者 Min Yang Haijun Guo +1 位作者 Yansheng Li Qiong Dang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期76-82,共7页
Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, ... Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g.h) with a stoichiometric feed of CH4 and C02. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction. 展开更多
关键词 Pt-CeO2-ZrO2/MgO catalyst CH4-CO2 reforming support modification stability
在线阅读 下载PDF
絮凝剂在矿井水处理中的应用进展 被引量:11
7
作者 李立欣 贾超 +2 位作者 张瑜 马放 Chen Gang 《矿产综合利用》 CAS 北大核心 2018年第5期1-5,共5页
矿井水的污染防治问题一直都是我国能源的开发利用产业中最重要的研究对象。我国是世界煤炭消耗大国,随着煤炭的大量开采,矿井废水带来的污染问题也日益严峻。本文分别阐述了有机絮凝剂、无机絮凝剂和微生物絮凝剂在矿井水处理中的作用... 矿井水的污染防治问题一直都是我国能源的开发利用产业中最重要的研究对象。我国是世界煤炭消耗大国,随着煤炭的大量开采,矿井废水带来的污染问题也日益严峻。本文分别阐述了有机絮凝剂、无机絮凝剂和微生物絮凝剂在矿井水处理中的作用及应用特点。提出今后絮凝剂处理矿井水研究的主要发展趋势。 展开更多
关键词 矿井水 有机絮凝剂 无机絮凝剂 微生物絮凝剂
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部