High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelations...High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation.展开更多
A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial...A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial information of template are ex- tracted and generalized as the template feature. At the same time, the codebook dictionary of local contour is also built up. Secondly, based on the codebook dictionary, sliding-window mechanism and the vote algorithm are used to select initial candidate object win- dows. Lastly, the final object windows are got from initial candidate windows based on local and spatial structure feature matching. Experimental results demonstrate that the proposed approach is able to consistently identify and accurately detect the objects with better performance than the existing methods.展开更多
Data-delivery of agricultural information is a very tedious work, traditional data-delivery patterns and methods can not meet the requirements of the practical work. This paper provided the design idea and implement m...Data-delivery of agricultural information is a very tedious work, traditional data-delivery patterns and methods can not meet the requirements of the practical work. This paper provided the design idea and implement method for data-delivery system of agricultural information based on Web. Report and data will be separated in this system, and the person can change template and data at any time on demand. The problem that report template and data fixed together would be solved. The agricultural information resources sharing would be also implemented.展开更多
In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-tar...In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-target threat assessment problems. The target attribute weight is calculated by the intuitionistic fuzzy entropy(IFE) algorithm and the time series weight is gained by the Poisson distribution method based on multi-times data. Finally,assessment and sequencing of the air multi-target threat model based on IFE and dynamic Vlse Kriterijumska Optimizacija I Kompromisno Resenje(VIKOR) is established with an example which indicates that the method is reasonable and effective.展开更多
To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two diff...To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.展开更多
Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control proble...Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.展开更多
The increasingly complex battlefield environment requests much closer connection in a team having both manned and unmanned aerial vehicles(MAVs and UAVs). This special heterogeneous team structure causes demands for e...The increasingly complex battlefield environment requests much closer connection in a team having both manned and unmanned aerial vehicles(MAVs and UAVs). This special heterogeneous team structure causes demands for effective organizational structure design solutions. Implementing adjustable autonomy in the organizational structure, the expected evaluation function is established based on the physical resource, intelligent resource, network efficiency, network vulnerability and task execution reliability. According to the above constraints, together with interaction latency, decision-making information processing capacity, and decision-making latency, we aim to find a preferential organizational structure. The proposed organizational structure includes cooperative relationships, supervisory control relationships, and decision-making authorization relationships. In addition,by considering the influence on the intelligent support capabilities and the task execution reliability created by adjustable autonomy, it helps to build the proposed organizational structure designed with certain degree of flexibility to deal with the potential changes in the unpredictable battlefield environment. Simulation is conducted to confirm our design to be valid. And the method is still valid under different battlefield environments and interventions.展开更多
Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing ...Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain,and the micro-Doppler(m-D)signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition(CEMD)algorithm,which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center.Then,a better focused ISAR image of the target with the non-rigid body can be obtained consequently.Results of the simulated and raw data demonstrate the effectiveness of the algorithm.展开更多
The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a ta...The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.展开更多
To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroy...To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.展开更多
Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane inc...Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane incident wave assumption, the narrowband, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radarseeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the usefulness of the developed formulations.展开更多
Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple sign...Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parameters of targets and their performances are compared. The simulation experiments show that there are no differences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is less than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.展开更多
The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. ...The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.展开更多
To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW' s) wavelet device, the full transfer multistrip c...To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW' s) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW' s wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW' s wavelet device are remarkably improved compared with those of the FGSAW' s wavelet device.展开更多
Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.I...Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.展开更多
Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily ...Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily distorted by the interferences or disturbances, the signal quality monitoring (SQM) is necessary to detect the presence of dangerous signal distortions. In this paper, we developed an SQM software for binary offset carrier (BOC) modulated navigation signals. Firstly, the models of BOC signal with ideal and distortion are presented respectively. Then the architecture of SQM software is proposed. Moreover, the effect of the white gaussian noise (WGN) and the front-end filter on the correlation peak of the receiver is analyzed. Finally, the biases induced by the signal distortion are evaluated. The experiments simulate the relationships between the code phase shift and the normalized correlation value in the case of the signal digital distortion and the analog distortion. The simulation results demonstrate that the proposed SQM method can effectively monitor the signal distortion and accurately estimate the correlation peak deviation caused by the distortion.展开更多
To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on th...To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.展开更多
In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat...In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.展开更多
The technologies of software architecture are introduced, and the software analysis-and-design process is divided into requirement analysis, software architecture design and system design. Using these technologies, a ...The technologies of software architecture are introduced, and the software analysis-and-design process is divided into requirement analysis, software architecture design and system design. Using these technologies, a model of architecture-centric software analysis and design process(ACSADP) is proposed. Meanwhile, with regard to the completeness, consistency and correctness between the software requirements and design results, the theories of function and process control are applied to ACSADP. Finally, a model of integrated development environnment (IDE) for ACSADP is propcsed. It can be demonstrated by the practice that the model of ACSADP can aid developer to manage software process effectively and improve the quality of software analysis and design.展开更多
基金supported by the Aeronautical Science Foundation of China(2020Z023053002).
文摘High complexity and uncertainty of air combat pose significant challenges to target intention prediction.Current interpolation methods for data pre-processing and wrangling have limitations in capturing interrelationships among intricate variable patterns.Accordingly,this study proposes a Mogrifier gate recurrent unit-D(Mog-GRU-D)model to address the com-bat target intention prediction issue under the incomplete infor-mation condition.The proposed model directly processes miss-ing data while reducing the independence between inputs and output states.A total of 1200 samples from twelve continuous moments are captured through the combat simulation system,each of which consists of seven dimensional features.To bench-mark the experiment,a missing valued dataset has been gener-ated by randomly removing 20%of the original data.Extensive experiments demonstrate that the proposed model obtains the state-of-the-art performance with an accuracy of 73.25%when dealing with incomplete information.This study provides possi-ble interpretations for the principle of target interactive mecha-nism,highlighting the model’s effectiveness in potential air war-fare implementation.
基金supported by the National Natural Science Foundation of China(60972095)Shaanxi Province Education Office Research Plan(2010JK589)
文摘A method of object detection based on combination of local and spatial information is proposed. Firstly, the categorygiven representative images are chosen through clustering to be templates, and the local and spatial information of template are ex- tracted and generalized as the template feature. At the same time, the codebook dictionary of local contour is also built up. Secondly, based on the codebook dictionary, sliding-window mechanism and the vote algorithm are used to select initial candidate object win- dows. Lastly, the final object windows are got from initial candidate windows based on local and spatial structure feature matching. Experimental results demonstrate that the proposed approach is able to consistently identify and accurately detect the objects with better performance than the existing methods.
基金Supported by Heilongjiang Province Natural Sciences Foundation (C200607)
文摘Data-delivery of agricultural information is a very tedious work, traditional data-delivery patterns and methods can not meet the requirements of the practical work. This paper provided the design idea and implement method for data-delivery system of agricultural information based on Web. Report and data will be separated in this system, and the person can change template and data at any time on demand. The problem that report template and data fixed together would be solved. The agricultural information resources sharing would be also implemented.
基金supported by the National Natural Science Foundation of China(61401363)the Science and Technology on Avionics Integration Laboratory and Aeronautical Science Foundation(20155153034)+1 种基金the Innovative Talents Promotion Plan in Shaanxi Province(2017KJXX-15)the Fundamental Research Funds for the Central Universities(3102016AXXX005)
文摘In view of the fact that traditional air target threat assessment methods are difficult to reflect the combat characteristics of uncertain, dynamic and hybrid formation, an algorithm is proposed to solve the multi-target threat assessment problems. The target attribute weight is calculated by the intuitionistic fuzzy entropy(IFE) algorithm and the time series weight is gained by the Poisson distribution method based on multi-times data. Finally,assessment and sequencing of the air multi-target threat model based on IFE and dynamic Vlse Kriterijumska Optimizacija I Kompromisno Resenje(VIKOR) is established with an example which indicates that the method is reasonable and effective.
基金supported by the National Natural Science Foundation of China (60902055)
文摘To improve the reliability and accuracy of the global po- sitioning system (GPS)/micro electromechanical system (MEMS)- inertial navigation system (INS) integrated navigation system, this paper proposes two different methods. Based on wavelet threshold denoising and functional coefficient autoregressive (FAR) model- ing, a combined data processing method is presented for MEMS inertial sensor, and GPS attitude information is also introduced to improve the estimation accuracy of MEMS inertial sensor errors. Then the positioning accuracy during GPS signal short outage is enhanced. To improve the positioning accuracy when a GPS signal is blocked for long time and solve the problem of the tra- ditional adaptive neuro-fuzzy inference system (ANFIS) method with poor dynamic adaptation and large calculation amount, a self-constructive ANFIS (SCANFIS) combined with the extended Kalman filter (EKF) is proposed for MEMS-INS errors modeling and predicting. Experimental road test results validate the effi- ciency of the proposed methods.
基金The authors would like to acknowledge National Natural Science Foundation of China(Grant No.61573285,No.62003267)Aeronautical Science Foundation of China(Grant No.2017ZC53021)+1 种基金Open Fund of Key Laboratory of Data Link Technology of China Electronics Technology Group Corporation(Grant No.CLDL-20182101)Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-220)to provide fund for conducting experiments.
文摘Tracking maneuvering target in real time autonomously and accurately in an uncertain environment is one of the challenging missions for unmanned aerial vehicles(UAVs).In this paper,aiming to address the control problem of maneuvering target tracking and obstacle avoidance,an online path planning approach for UAV is developed based on deep reinforcement learning.Through end-to-end learning powered by neural networks,the proposed approach can achieve the perception of the environment and continuous motion output control.This proposed approach includes:(1)A deep deterministic policy gradient(DDPG)-based control framework to provide learning and autonomous decision-making capability for UAVs;(2)An improved method named MN-DDPG for introducing a type of mixed noises to assist UAV with exploring stochastic strategies for online optimal planning;and(3)An algorithm of taskdecomposition and pre-training for efficient transfer learning to improve the generalization capability of UAV’s control model built based on MN-DDPG.The experimental simulation results have verified that the proposed approach can achieve good self-adaptive adjustment of UAV’s flight attitude in the tasks of maneuvering target tracking with a significant improvement in generalization capability and training efficiency of UAV tracking controller in uncertain environments.
基金supported by the National Natural Science Foundation of China(61305133)the Aeronautical Science Foundation of China(2016ZC53020)the Fundamental Research Funds for the Central Universities(3102017jg02015)
文摘The increasingly complex battlefield environment requests much closer connection in a team having both manned and unmanned aerial vehicles(MAVs and UAVs). This special heterogeneous team structure causes demands for effective organizational structure design solutions. Implementing adjustable autonomy in the organizational structure, the expected evaluation function is established based on the physical resource, intelligent resource, network efficiency, network vulnerability and task execution reliability. According to the above constraints, together with interaction latency, decision-making information processing capacity, and decision-making latency, we aim to find a preferential organizational structure. The proposed organizational structure includes cooperative relationships, supervisory control relationships, and decision-making authorization relationships. In addition,by considering the influence on the intelligent support capabilities and the task execution reliability created by adjustable autonomy, it helps to build the proposed organizational structure designed with certain degree of flexibility to deal with the potential changes in the unpredictable battlefield environment. Simulation is conducted to confirm our design to be valid. And the method is still valid under different battlefield environments and interventions.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universitiesthe State Key Laboratory of Millimeter Waves(K202022)。
文摘Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain,and the micro-Doppler(m-D)signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition(CEMD)algorithm,which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center.Then,a better focused ISAR image of the target with the non-rigid body can be obtained consequently.Results of the simulated and raw data demonstrate the effectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(61671181).
文摘The state estimation of a maneuvering target,of which the trajectory shape is independent on dynamic characteristics,is studied.The conventional motion models in Cartesian coordinates imply that the trajectory of a target is completely determined by its dynamic characteristics.However,this is not true in the applications of road-target,sea-route-target or flight route-target tracking,where target trajectory shape is uncoupled with target velocity properties.In this paper,a new estimation algorithm based on separate modeling of target trajectory shape and dynamic characteristics is proposed.The trajectory of a target over a sliding window is described by a linear function of the arc length.To determine the unknown target trajectory,an augmented system is derived by denoting the unknown coefficients of the function as states in mileage coordinates.At every estimation cycle except the first one,the interaction(mixing)stage of the proposed algorithm starts from the latest estimated base state and a recalculated parameter vector,which is determined by the least squares(LS).Numerical experiments are conducted to assess the performance of the proposed algorithm.Simulation results show that the proposed algorithm can achieve better performance than the conventional coupled model-based algorithms in the presence of target maneuvers.
基金supported by the National Natural Science Foundation of China (60774064)the Aerospace Science Foundation (05D53022)the Youth for NPU Teachers Scientific and Technological Innovation Foundation (W016210)
文摘To improve the effect of destroying time-sensitive target (TST), a method of operational effectiveness evaluation is presented and some influential factors are analyzed based on the combat flow of system for destroying TST. Considering the possible operation modes of the system, a waved operation mode and a continuous operation mode are put forward at first. At the same time, some relative formulas are modified. In examples, the influential factors and operation modes are analyzed based on the system effectiveness. From simulation results, some design and operation strategies of the system for destroying time sensitive targets are concluded, which benefit to the improvement of the system effectiveness.
文摘Angular glint is a significant electromagnetic (EM) scattering signature of extended radar targets. Based on the adaptive cross approximation (ACA) algorithm accelerated method of moments (MoM) and the plane incident wave assumption, the narrowband, wideband and newly developed high-resolution range profile (HRRP) based angular glint calculation formulations are derived and applied to arbitrarily shaped three-dimensional (3D) perfectly electrical y conducting (PEC) objects. In addition, the near-field angular glint is emphasized, which is of great importance for radarseeker applications. Furthermore, with the HRRP based angular glint, an approach to rigorously determine range resolution cel s which own relatively smal er angular glint is provided. Numerical results are presented with new findings to demonstrate the usefulness of the developed formulations.
基金supported by the Aerospace Science and Technology Foundation of China(2007CH080004).
文摘Based on the analysis of impulse response properties, a scattering model of ultra wideband (UWB) radar targets is developed to estimate the target parameters exactly. With this model, two algorithms of multiple signal classification (MUSIC), and matrix pencil (MP), are introduced to calculate the scattering center parameters of targets and their performances are compared. The simulation experiments show that there are no differences in the estimation precision of MUSIC and MP methods when the signal-to-noise ratio (SNR) is larger than 13 dB. However, the MP method has a better performance than that of MUSIC method when the SNR is smaller than 13 dB. Besides, the time consuming of MP method is less than that of MUSIC method. Therefore, the MP algorithm is preferred for the parametric estimation of UWB radar targets.
基金supported in part by the National Outstanding Youth Foundation of P.R.China (60525303)the National Natural Science Foundation of P.R.China(60404022,60604004)+2 种基金the Natural Science Foundation of Hebei Province (102160)the special projects in mathematics funded by the Natural Science Foundation of Hebei Province(07M005)the NS of Education Office in Hebei Province (2004123).
文摘The Newton-Like algorithm with price estimation error in optimization flow control in network is analyzed. The estimation error is treated as inexactness of the gradient and the inexact descent direction is analyzed. Based on the optimization theory, a sufficient condition for convergence of this algorithm with bounded price estimation error is obtained. Furthermore, even when this sufficient condition doesn't hold, this algorithm can also converge, provided a modified step size, and an attraction region is obtained. Based on Lasalle's invariance principle applied to a suitable Lyapunov function, the dynamic system described by this algorithm is proved to be global stability if the error is zero. And the Newton-Like algorithm with bounded price estimation error is also globally stable if the error satisfies the sufficient condition for convergence. All trajectories ultimately converge to the equilibrium point.
基金This project was supported by the National Natural Science Foundation of China (60476037 ,60176020) and the Doc-toral Foundation of the Ministry of Education of China (20020698014)
文摘To overcome the bulk acoustic wave (BAW), the triple transit signals and the discontinuous frequency band in the first generation surface acoustic wave's (FGSAW' s) wavelet device, the full transfer multistrip coupler (MSC) is applied to implement wavelet device, and a novel structure of the second generation surface acoustic wave's (SGSAW's) wavelet device is proposed. In the SGSAW' s wavelet device, the BAW is separated and eliminated in different acoustic propagating tracks, and the triple transit signal is suppressed. For arbitrary wavelet scale device, the center frequency is three times the radius of frequency band, which ensures that the frequency band of the SGSAW's wavelet device is continuous, and avoids losing signals caused by the discontinuation of frequency band. Experimental result confirms that the BAW suppression, ripples in band, receiving loss and insertion loss of the SGSAW' s wavelet device are remarkably improved compared with those of the FGSAW' s wavelet device.
基金supported by the National Natural Science Foundation of China(61871146).
文摘Inverse synthetic aperture radar(ISAR)imaging of near-field targets is potentially useful in some specific applications,which makes it very important to efficiently produce highquality image of the near-field target.In this paper,the simplified target model with uniform linear motion is applied to the near-field target imaging,which overcomes the complexity of the traditional near-field imaging algorithm.According to this signal model,the method based on coordinate conversion and image interpolation combined with the range-Doppler(R-D)algorithm is proposed to correct the near-field distortion problem.Compared with the back-projection(BP)algorithm,the proposed method produces better focused ISAR images of the near-field target,and decreases the computation complexity significantly.Experimental results of the simulated data have demonstrated the effectiveness and robustness of the proposed method.
基金supported by the National Natural Science Foundation of China(61771393 61571368)
文摘Many safety-critical applications that utilize the global navigation satellite system (GNSS) demand highly accurate positioning information, as well as highly integrity and reliability. Due to GNSS signals are easily distorted by the interferences or disturbances, the signal quality monitoring (SQM) is necessary to detect the presence of dangerous signal distortions. In this paper, we developed an SQM software for binary offset carrier (BOC) modulated navigation signals. Firstly, the models of BOC signal with ideal and distortion are presented respectively. Then the architecture of SQM software is proposed. Moreover, the effect of the white gaussian noise (WGN) and the front-end filter on the correlation peak of the receiver is analyzed. Finally, the biases induced by the signal distortion are evaluated. The experiments simulate the relationships between the code phase shift and the normalized correlation value in the case of the signal digital distortion and the analog distortion. The simulation results demonstrate that the proposed SQM method can effectively monitor the signal distortion and accurately estimate the correlation peak deviation caused by the distortion.
基金supported by the National Natural Science Foundation of China(61701140).
文摘To analyze the influence of time synchronization error,phase synchronization error,frequency synchronization error,internal delay of the transceiver system,and range error and angle error between the unit radars on the target detection performance,firstly,a spatial detection model of distributed high-frequency surface wave radar(distributed-HFSWR)is established in this paper.In this model,a method for accurate extraction of direct wave spectrum based on curve fitting is proposed to obtain accurate system internal delay and frequency synchronization error under complex electromagnetic environment background and low signal to noise ratio(SNR),and to compensate for the shift of range and Doppler frequency caused by time-frequency synchronization error.The direct wave component is extracted from the spectrum,the range estimation error and Doppler estimation error are reduced by the method of curve fitting,and the fitting accuracy of the parameters is improved.Then,the influence of frequency synchronization error on target range and radial Doppler velocity is quantitatively analyzed.The relationship between frequency synchronization error and radial Doppler velocity shift and range shift is given.Finally,the system synchronization parameters of the trial distributed-HFSWR are obtained by the proposed spectrum extraction method based on curve fitting,the experimental data is compensated to correct the shift of the target,and finally the correct target parameter information is obtained.Simulations and experimental results demonstrate the superiority and correctness of the proposed method,theoretical derivation and detection model proposed in this paper.
基金the National Natural Science Foundation of China (60372055) and the National DoctoralFoundation of China (2003698027).
文摘In order to investigate the impact of channel model parameters on the channel capacity of a multipleinput multiple-output (MIMO) system, a novel method is proposed to explore the channel capacity under Rayleigh fiat fading with correlated transmit and receive antennas. The optimal transmitting direction which can achieve maximum channel capacity is derived using random matrices theory. In addition, the closed-form expression for the channel capacity of MIMO systems is given by utilizing the properties of Wishart distribution when SNR is high. Computer simulation results show that the channel capacity is maximized when the antenna spacing increases to a certain point, and furthermore, the larger the scattering angle is, the more quickly the channel capacity converges to its maximum. At high SNR (〉12 dB), the estimation of capacity is close to its true wlue. And, when the same array configuration is adopted both at the transmitter and the receiver, the UCA yields higher channel capacity than ULA.
文摘The technologies of software architecture are introduced, and the software analysis-and-design process is divided into requirement analysis, software architecture design and system design. Using these technologies, a model of architecture-centric software analysis and design process(ACSADP) is proposed. Meanwhile, with regard to the completeness, consistency and correctness between the software requirements and design results, the theories of function and process control are applied to ACSADP. Finally, a model of integrated development environnment (IDE) for ACSADP is propcsed. It can be demonstrated by the practice that the model of ACSADP can aid developer to manage software process effectively and improve the quality of software analysis and design.