To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shi...To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.展开更多
Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The m...ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.展开更多
Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application o...Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.展开更多
Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the ...Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.展开更多
针对现有配电网有源电压消弧方法未充分考虑线路电压降落以及分布式电源接入的影响,发生单相接地故障时无法保证故障点电压为0,存在无法可靠消弧的问题,提出了一种考虑分布式电源接入的配电网有源电压消弧技术。首先,在接入分布式电源...针对现有配电网有源电压消弧方法未充分考虑线路电压降落以及分布式电源接入的影响,发生单相接地故障时无法保证故障点电压为0,存在无法可靠消弧的问题,提出了一种考虑分布式电源接入的配电网有源电压消弧技术。首先,在接入分布式电源的基础上,考虑线路的电压降落,推导消弧电压理论计算公式,提出改进有源电压消弧方法。其次,提出一种基于馈线终端设备(feeder terminal unit, FTU)量测数据的数据驱动测距方法,能够在故障发生后准确计算出故障距离,为消弧线圈的控制提供数据。最后,通过仿真证明所提方法相较于传统有源电压消弧方法,能够更好地控制故障点电压为0。展开更多
This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals noth...This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.展开更多
A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed ...A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed by ferromagnetic thin films as in an inductive head for a magnetic data storage device. The magnetic field produced by the current exerts a magnetic force on the magnetic fluid and drives the fluid to cover the cell surface. The surface tension of the fluid provides a restoring force when the field is reduced. The actuation of the fluid is completed in about 12 ms for both thin-to-thick and thick-to-thin fluid film switchings by magnetic forces and surface tension forces, respectively. It was observed that the switching speed was almost independent of the driving current, and no considerable thermal effect were observed when driven by a current up to 100 mA.展开更多
A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide f...A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide for surface plasmon.Due to the guided wave SPR(GWSPR)modes,the index of the liquid phase samples can be measured more accurately than the conventional SPR sensors.Numerical simulation results show that the sensitivity of the sensor is about 5 times higher than the conventional SPR sensors.The origin of the enhancement mechanism is the combination of GWSPR in the Ag/PbS/GR hybrid nanostructure which enables the surface plasmon to spread along the PbS layer.In Ag/PbS/GR hybrid nanostructure,the electric field is concentrated mostly in the PbS layer,and the enhancement of the field intensity is nearly30%.展开更多
Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these lo...Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these logic rule with Pan-Boolean algebra was described, therefore a PID Pan-Boolean algebra control algorithm was obtained. The simulation results indicates that the new control algorithm is more effective compared to the traditional PID algorithm, having advantages such as more than 3 adjustable parameters of controllers, better result, and so on.展开更多
Synthetic aperture radar(SAR) is usually sensitive to trajectory deviations that cause serious motion error in the recorded data. In this paper, a coherent range-dependent mapdrift(CRDMD) algorithm is developed to acc...Synthetic aperture radar(SAR) is usually sensitive to trajectory deviations that cause serious motion error in the recorded data. In this paper, a coherent range-dependent mapdrift(CRDMD) algorithm is developed to accommodate the range-variant motion errors. By utilizing the algorithm as an estimate core, robust motion compensation strategy is proposed for unmanned aerial vehicle(UAV) SAR imagery. CRDMD outperforms the conventional map-drift algorithms in both accuracy and efficiency. Real data experiments show that the proposed approach is appropriate for precise motion compensation for UAV SAR.展开更多
A p-i-i-n type AlG a N heterostructure avalanche photodiodes(APDs)is proposed to decrease the avalanche breakdown voltage and to realize higher gain by using high-Al-content AlG aN layer as multiplication layer and lo...A p-i-i-n type AlG a N heterostructure avalanche photodiodes(APDs)is proposed to decrease the avalanche breakdown voltage and to realize higher gain by using high-Al-content AlG aN layer as multiplication layer and low-Al-content AlG aN layer as absorption layer.The calculated results show that the designed APD can significantly reduce the breakdown voltage by almost 30%,and about sevenfold increase of maximum gain compared to the conventional Al GaN APD.The noise in designed APD is also less than that in conventional APD due to its low dark current at the breakdown voltage point.Moreover,the one-dimensional(1D)dual-periodic photonic crystal(PC)with anti-reflection coating filter is designed to achieve the solar-blind characteristic and cutoff wavelength of 282 nm is obtained.展开更多
A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef...A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.展开更多
In the equatorial region,deep amplitude fading in global positioning system(GPS)signals frequently occurs during the strong ionospheric scintillation,it can lead to the loss of lock in GPS carrier tracking loops,and r...In the equatorial region,deep amplitude fading in global positioning system(GPS)signals frequently occurs during the strong ionospheric scintillation,it can lead to the loss of lock in GPS carrier tracking loops,and result in increased positioning error and even navigation interruption.The relationships between amplitude scintillation indices and detrended carrier frequency are investigated,based on GPS L1 C/A signals during the last peak of the solar cycle at the low latitude site of São Josédos Campos,Brazil(23.2S,45.9W)from 2013 to 2015.Corresponding mathematic model of the probability distribution function is built for the first time to provide statistical analysis on the above relationships.The results show that the standard carrier frequencies reveal an almost linear relation with the amplitude scintillation indices.Moreover,the frequency widths of detrended frequency are proportional to levels of amplitude scintillation when the value of the peak probability is lower than the corresponding boundary.A conclusion can be drawn that different levels of amplitude scintillation will influence the fluctuation of the carrier frequency.The analysis will provide useful guidance to set the receiver’s bandwidth with respect to the different scintillation levels and design the advanced tracking algorithms to improve the robustness and precision of the GPS receiver.展开更多
基金Project(51305467)supported by the National Natural Science Foundation of ChinaProject(12JJ4050)supported by the Natural Science Foundation of Hunan Province,China
文摘To ensure running safety,the secondary spring loads of railway vehicles must be well equalized.Due to the coupling interactive effects of these hyper static suspended structures,the equalization adjustment through shimming procedure is quite complex.Therefore,an effective and reliable method in application is developed in this paper.Firstly,the best regulation of spring load is solved based on a mechanical model of the secondary suspension system,providing a target for actual adjustment.To reveal the relationship between secondary spring load distribution and shim quantity sequence,a forecasting model is constructed and then modified experimentally with consideration of car body’s elastic deformation.Further,a gradient-based algorithm with a momentum operation is proposed for the load optimization.Effectiveness of the whole method has been verified on a test rig.It is experimentally confirmed that this research provides an important basis for achieving an optimal regulation of spring load distribution for multiple types of railway vehicles.
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
文摘ZnO is a highly significant II-VI semiconductor known for its excellent optoelectronic properties,making it widely applicable and promising for use in light-emitting devices,solar cells,lasers,and photodetectors.The methods for preparing ZnO are diverse,and among them,the hydrothermal method is favored for its simplicity,ease of operation,and low cost,making it an optimal choice for ZnO single-crystal growth.Most studies investigating the effects of different hydrothermal experimental parameters on the morphology and performance of ZnO nano-materials typically focus on only 2—3 variable parameters,with few examining the impact of all possible experimental parameter changes on ZnO nano-mate-rials.The principles of the hydrothermal method and its advantages in nano-material preparation were briefly introduced in this article.The detailed discussion on the influence of various experimental parameters on the preparation of ZnO nano-materials was provided,which including reaction materials,Zn^(2+)/OH^(-)ratio,reaction time and temperature,additives,experimental equipment,and annealing conditions.The review co-vers how different experimental parameters affect the morphology and performance of the materials,as well as how different rare earth doping elements influence the performance of ZnO nano-materials.It is hoped that this work will contribute to future research on the hydrothermal synthesis of nano-materials.
基金Research and Development Project on Voltage Sensors by China Southern Power Grid Digital Research Institute(210000KK52220017)。
文摘Lead magnesium niobate-lead titanate(PMN-PT)piezoelectric single crystals are widely utilized due to their outstanding performance,with varying compositions significantly impacting their properties.While application of PMN-PT in high-power settings is rapidly evolving,material parameters are typically tested under low signal conditions(1 V),and effects of different PT(PbTiO_(3))contents on the performance of PMN-PT single crystals under high-power conditions remain unclear.This study developed a comprehensive high-power testing platform using the constant voltage method to evaluate performance of PMN-PT single crystals with different PT contents under high-power voltage stimulation.Using crystals sized at 10 mm×3 mm×0.5 mm as an example,this research explored changes in material parameters.The results exhibit that while trend of the parameter changes under high-power excitation was consistent across different PT contents,degree of the change varied significantly.For instance,a PMN-PT single crystal with 26%(in mol)PT content exhibited a 25%increase in the piezoelectric coefficient d_(31),a 13%increase in the elastic compliance coefficient s_(11)^(E),a 17%increase in the electromechanical coupling coefficient k_(31),and a 73%decrease in the mechanical quality factor Q_(m) when the power reached 7.90 W.As the PT content increased,the PMN-PT materials became more susceptible to temperature influences,significantly reducing the power tolerance and more readily reaching the depolarization temperatures.This led to loss of piezoelectric performance.Based on these findings,a clearer understanding of impact of PT content on performance of PMN-PT single crystals under high-power applications has been established,providing reliable data to support design of sensors or transducers using PMN-PT as the sensitive element.
基金Project(10834015) supported by the National Natural Science Foundation of ChinaProject(12SKY01-1) supported by the Doctoral Fund of Shangluo University,ChinaProject(14JK1223) supported by the Scientific Research Program of Shaanxi Provincial Education Department,China
文摘Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.
文摘针对现有配电网有源电压消弧方法未充分考虑线路电压降落以及分布式电源接入的影响,发生单相接地故障时无法保证故障点电压为0,存在无法可靠消弧的问题,提出了一种考虑分布式电源接入的配电网有源电压消弧技术。首先,在接入分布式电源的基础上,考虑线路的电压降落,推导消弧电压理论计算公式,提出改进有源电压消弧方法。其次,提出一种基于馈线终端设备(feeder terminal unit, FTU)量测数据的数据驱动测距方法,能够在故障发生后准确计算出故障距离,为消弧线圈的控制提供数据。最后,通过仿真证明所提方法相较于传统有源电压消弧方法,能够更好地控制故障点电压为0。
基金National Key Research and Development Program of China(2021YFB3101402)National Natural Science Foundation of China(62202294)。
文摘This study constructs a function-private inner-product predicate encryption(FP-IPPE)and achieves standard enhanced function privacy.The enhanced function privacy guarantees that a predicate secret key skf reveals nothing about the predicate f,as long as f is drawn from an evasive distribution with sufficient entropy.The proposed scheme extends the group-based public-key function-private predicate encryption(FP-PE)for“small superset predicates”proposed by Bartusek et al.(Asiacrypt 19),to the setting of inner-product predicates.This is the first construction of public-key FP-PE with enhanced function privacy security beyond the equality predicates,which is previously proposed by Boneh et al.(CRYPTO 13).The proposed construction relies on bilinear groups,and the security is proved in the generic bilinear group model.
文摘A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed by ferromagnetic thin films as in an inductive head for a magnetic data storage device. The magnetic field produced by the current exerts a magnetic force on the magnetic fluid and drives the fluid to cover the cell surface. The surface tension of the fluid provides a restoring force when the field is reduced. The actuation of the fluid is completed in about 12 ms for both thin-to-thick and thick-to-thin fluid film switchings by magnetic forces and surface tension forces, respectively. It was observed that the switching speed was almost independent of the driving current, and no considerable thermal effect were observed when driven by a current up to 100 mA.
基金supported by Anhui University Natural Science Research Project,China(KJ2015A153)National Natural Science Foundation of China (11304002)
文摘A surface plasmon resonance(SPR)sensor with Ag/PbS/GR hybrid nanostructure has been proposed for the diagnostics of liquid phase samples.Here Ag/PbS/GR hybrid nanostructure is designed as an asymmetric MIM waveguide for surface plasmon.Due to the guided wave SPR(GWSPR)modes,the index of the liquid phase samples can be measured more accurately than the conventional SPR sensors.Numerical simulation results show that the sensitivity of the sensor is about 5 times higher than the conventional SPR sensors.The origin of the enhancement mechanism is the combination of GWSPR in the Ag/PbS/GR hybrid nanostructure which enables the surface plasmon to spread along the PbS layer.In Ag/PbS/GR hybrid nanostructure,the electric field is concentrated mostly in the PbS layer,and the enhancement of the field intensity is nearly30%.
基金Project (J51801) supported by Shanghai Education Commission Key DisciplineProject(08ZY79)supported by Shanghai Education Commission Research FundProject(DZ207004)supported by Shanghai Second Polytechnic University Fund
文摘Single input single output system was studied. With proportion, differential, integral results of deviation between given input and output as controller input, the logic rules in control process was analyzed, these logic rule with Pan-Boolean algebra was described, therefore a PID Pan-Boolean algebra control algorithm was obtained. The simulation results indicates that the new control algorithm is more effective compared to the traditional PID algorithm, having advantages such as more than 3 adjustable parameters of controllers, better result, and so on.
基金supported by the Key R&D Program Projects in Hainan Province (ZDY 2019008)the State Key Laboratory of Rail T ransit Engineering Information (SKLK22-08)。
文摘Synthetic aperture radar(SAR) is usually sensitive to trajectory deviations that cause serious motion error in the recorded data. In this paper, a coherent range-dependent mapdrift(CRDMD) algorithm is developed to accommodate the range-variant motion errors. By utilizing the algorithm as an estimate core, robust motion compensation strategy is proposed for unmanned aerial vehicle(UAV) SAR imagery. CRDMD outperforms the conventional map-drift algorithms in both accuracy and efficiency. Real data experiments show that the proposed approach is appropriate for precise motion compensation for UAV SAR.
基金supported by Anhui University Natural Science Research Project, China (KJ2015A153)Initial research fund from Chuzhou University, China (2014qd024)+1 种基金The Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZ D2016329)the Anhui Provincial Natural Science Foundation of China under Grant (1708085MF149)
文摘A p-i-i-n type AlG a N heterostructure avalanche photodiodes(APDs)is proposed to decrease the avalanche breakdown voltage and to realize higher gain by using high-Al-content AlG aN layer as multiplication layer and low-Al-content AlG aN layer as absorption layer.The calculated results show that the designed APD can significantly reduce the breakdown voltage by almost 30%,and about sevenfold increase of maximum gain compared to the conventional Al GaN APD.The noise in designed APD is also less than that in conventional APD due to its low dark current at the breakdown voltage point.Moreover,the one-dimensional(1D)dual-periodic photonic crystal(PC)with anti-reflection coating filter is designed to achieve the solar-blind characteristic and cutoff wavelength of 282 nm is obtained.
文摘A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.
基金This work was supported by the National Key Research and Development Plan of China(2018YFB0505103)the National Natural Science Foundation of China(61873064)the Science and Technology Project of State Grid Corporation of China(SGSHJX00KXJS1901531).
文摘In the equatorial region,deep amplitude fading in global positioning system(GPS)signals frequently occurs during the strong ionospheric scintillation,it can lead to the loss of lock in GPS carrier tracking loops,and result in increased positioning error and even navigation interruption.The relationships between amplitude scintillation indices and detrended carrier frequency are investigated,based on GPS L1 C/A signals during the last peak of the solar cycle at the low latitude site of São Josédos Campos,Brazil(23.2S,45.9W)from 2013 to 2015.Corresponding mathematic model of the probability distribution function is built for the first time to provide statistical analysis on the above relationships.The results show that the standard carrier frequencies reveal an almost linear relation with the amplitude scintillation indices.Moreover,the frequency widths of detrended frequency are proportional to levels of amplitude scintillation when the value of the peak probability is lower than the corresponding boundary.A conclusion can be drawn that different levels of amplitude scintillation will influence the fluctuation of the carrier frequency.The analysis will provide useful guidance to set the receiver’s bandwidth with respect to the different scintillation levels and design the advanced tracking algorithms to improve the robustness and precision of the GPS receiver.