In order to improve the resource allocation mechanism of artificial immune recognition system(AIRS) and decrease the memory cells,a fuzzy logic resource allocation and memory cell pruning based AIRS(FPAIRS) is propose...In order to improve the resource allocation mechanism of artificial immune recognition system(AIRS) and decrease the memory cells,a fuzzy logic resource allocation and memory cell pruning based AIRS(FPAIRS) is proposed.In FPAIRS,the fuzzy logic is determined by a parameter,thus,the optimal fuzzy logics for different problems can be located through changing the parameter value.At the same time,the memory cells of low fitness scores are pruned to improve the classifier.This classifier was compared with other classifiers on six UCI datasets classification performance.The results show that the accuracies reached by FPAIRS are higher than or comparable to the accuracies of other classifiers,and the memory cells decrease when compared with the memory cells of AIRS.The results show that the algorithm is a high-performance classifier.展开更多
To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for s...To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.展开更多
This paper studies the problem of stability for continuous-time systems with differentiable time-varying delays.By using the information of delay derivative,improved asymptotic stability conditions for time-delay syst...This paper studies the problem of stability for continuous-time systems with differentiable time-varying delays.By using the information of delay derivative,improved asymptotic stability conditions for time-delay systems are presented.Unlike the previous methods,the upper bound of the delay derivative is taken into consideration even if this upper bound is larger than or equal to 1.It is proved that the obtained results are less conservative than the existing ones.Meanwhile,the computational complexity of the presented stability criteria is reduced greatly since fewer decision variables are involved.Numerical examples are given to illustrate the effectiveness and less conservatism of the obtained stability conditions.展开更多
Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane h...Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier.展开更多
Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence w...Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.展开更多
Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a met...Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.展开更多
基金Project(61170199)supported by the National Natural Science Foundation of ChinaProject(11A004)support by the Scientific Research Fund of Education Department of Hunan Province,China
文摘In order to improve the resource allocation mechanism of artificial immune recognition system(AIRS) and decrease the memory cells,a fuzzy logic resource allocation and memory cell pruning based AIRS(FPAIRS) is proposed.In FPAIRS,the fuzzy logic is determined by a parameter,thus,the optimal fuzzy logics for different problems can be located through changing the parameter value.At the same time,the memory cells of low fitness scores are pruned to improve the classifier.This classifier was compared with other classifiers on six UCI datasets classification performance.The results show that the accuracies reached by FPAIRS are higher than or comparable to the accuracies of other classifiers,and the memory cells decrease when compared with the memory cells of AIRS.The results show that the algorithm is a high-performance classifier.
基金supported by the National Natural Science Foundation of China (61701020)the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB (BK19BF009)。
文摘To improve the error correction performance, an innovative encoding structure with tail-biting for spinal codes is designed. Furthermore, an adaptive forward stack decoding(A-FSD) algorithm with lower complexity for spinal codes is proposed. In the A-FSD algorithm, a flexible threshold parameter is set by a variable channel state to narrow the scale of nodes accessed. On this basis, a new decoding method of AFSD with early termination(AFSD-ET) is further proposed. The AFSD-ET decoder not only has the ability of dynamically modifying the number of stored nodes, but also adopts the early termination criterion to curtail complexity. The complexity and related parameters are verified through a series of simulations. The simulation results show that the proposed spinal codes with tail-biting and the AFSD-ET decoding algorithms can reduce the complexity and improve the decoding rate without sacrificing correct decoding performance.
基金Supported by National Natural Science Foundation of China(60574011)
Acknowledgement The authors would like to thank Professor YANG Guang-Hong for his guidance.
基金Program for New Century Excellent Talents in University(NCET-04-0283)the Funds for Creative Research Groups of China(60521003)+3 种基金Program for Changjiang Scholars and Innovative Research Team in University(IRT0421)the State Key Program of National Natural Science Foundation of China(60534010)National Natural Science Foundatiou of China(60674021)the Funds of Ph.D.Program of Ministry of Education,China(20060145019)
文摘This paper studies the problem of stability for continuous-time systems with differentiable time-varying delays.By using the information of delay derivative,improved asymptotic stability conditions for time-delay systems are presented.Unlike the previous methods,the upper bound of the delay derivative is taken into consideration even if this upper bound is larger than or equal to 1.It is proved that the obtained results are less conservative than the existing ones.Meanwhile,the computational complexity of the presented stability criteria is reduced greatly since fewer decision variables are involved.Numerical examples are given to illustrate the effectiveness and less conservatism of the obtained stability conditions.
基金Foundation item: Projects(61170199, 60874070) supported by the National Natural Science Foundation of China Project(11A004) supported by the Major Project of Education Department in Hunan Province, China Project(2010GK3067) supported by Science and Technology Planning of Hunan Province, China
文摘Most of the developed immune based classifiers generate antibodies randomly, which has negative effect on the classification performance. In order to guide the antibody generation effectively, a decision hyper plane heuristic based artificial immune network classification algorithm (DHPA1NC) is proposed. DHPAINC taboos the inner regions of the class domain, thus, the antibody generation is limited near the class domain boundary. Then, the antibodies are evaluated by their recognition abilities, and the antibodies of low recognition abilities are removed to avoid over-fitting. Finally, the high quality antibodies tend to be stable in the immune network. The algorithm was applied to two simulated datasets classification, and the results show that the decision hyper planes determined by the antibodies fit the class domain boundaries well. Moreover, the algorithm was applied to UCI datasets classification and emotional speech recognition, and the results show that the algorithm has good performance, which means that DHPAINC is a promising classifier.
基金Projects(10871031, 60474070) supported by the National Natural Science Foundation of ChinaProject(07A001) supported by the Scientific Research Fund of Hunan Provincial Education Department, China
文摘Based on the rough set theory which is a powerful tool in dealing with vagueness and uncertainty, an algorithm to mine association rules in incomplete information systems was presented and the support and confidence were redefined. The algorithm can mine the association rules with decision attributes directly without processing missing values. Using the incomplete dataset Mushroom from UCI machine learning repository, the new algorithm was compared with the classical association rules mining algorithm based on Apriori from the number of rules extracted, testing accuracy and execution time. The experiment results show that the new algorithm has advantages of short execution time and high accuracy.
基金supported by the Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB(BK19CF002).
文摘Pilot contamination can spoil the accuracy of channel estimation and then has become one of the key problems influencing the performance of massive multiple input multiple output(MIMO)systems.This paper proposes a method based on cell classification and users grouping to mitigate the pilot contamination in multi-cell massive MIMO systems and improve the spectral efficiency.The pilots of the terminals are allocated onebit orthogonal identifier to diminish the cell categories by the operation of exclusive OR(XOR).At the same time,the users are divided into edge user groups and central user groups according to the large-scale fading coefficients by the clustering algorithm,and different pilot sequences are assigned to different groups.The simulation results show that the proposed method can effectively improve the spectral efficiency of multi-cell massive MIMO systems.