期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Online Learning-Based Offloading Decision and Resource Allocation in Mobile Edge Computing-Enabled Satellite-Terrestrial Networks
1
作者 Tong Minglei Li Song +1 位作者 Han Wanjiang Wang Xiaoxiang 《China Communications》 SCIE CSCD 2024年第3期230-246,共17页
Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal ... Mobile edge computing(MEC)-enabled satellite-terrestrial networks(STNs)can provide Internet of Things(IoT)devices with global computing services.Sometimes,the network state information is uncertain or unknown.To deal with this situation,we investigate online learning-based offloading decision and resource allocation in MEC-enabled STNs in this paper.The problem of minimizing the average sum task completion delay of all IoT devices over all time periods is formulated.We decompose this optimization problem into a task offloading decision problem and a computing resource allocation problem.A joint optimization scheme of offloading decision and resource allocation is then proposed,which consists of a task offloading decision algorithm based on the devices cooperation aided upper confidence bound(UCB)algorithm and a computing resource allocation algorithm based on the Lagrange multiplier method.Simulation results validate that the proposed scheme performs better than other baseline schemes. 展开更多
关键词 computing resource allocation mobile edge computing satellite-terrestrial networks task offloading decision
在线阅读 下载PDF
Intelligent Task Offloading and Collaborative Computation over D2D Communication 被引量:6
2
作者 Cuili Jiang Tengfei Cao Jianfeng Guan 《China Communications》 SCIE CSCD 2021年第3期251-263,共13页
In this paper,the problem of computation offloading in the edge server is studied in a mobile edge computation(MEC)-enabled cell networks that consists of a base station(BS)integrating edge servers,several terminal de... In this paper,the problem of computation offloading in the edge server is studied in a mobile edge computation(MEC)-enabled cell networks that consists of a base station(BS)integrating edge servers,several terminal devices and collaborators.In the considered networks,we develop an intelligent task offloading and collaborative computation scheme to achieve the optimal computation offloading.First,a distance-based collaborator screening method is proposed to get collaborators within the distance threshold and with high power.Second,based on the Lyapunov stochastic optimization theory,the system stability problem is transformed into a queue stability issue,and the optimal computation offloading is obtained by solving these three sub-problems:task allocation control,task execution control and queue update,respectively.Moreover,rigorous experimental simulation shows that our proposed computation offloading algorithm can achieve the joint optimization among the system efficiency,energy consumption and time delay compared to the mobility-aware and migration-enabled approach,Full BS and Full local. 展开更多
关键词 utility maximization lyapunov optimization task offloading mobile edge computing
在线阅读 下载PDF
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
3
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
An Enhanced Searching Strategy for Multi-Agent Mobile Applications 被引量:1
4
作者 Xiaoyu Zhang Wei Liu Fangchun Yang 《China Communications》 SCIE CSCD 2022年第11期282-296,共15页
Multi-agent mobile applications play an essential role in mobile applications and have attracted more and more researchers’attention.Previous work has always focused on multi-agent applications with perfect informati... Multi-agent mobile applications play an essential role in mobile applications and have attracted more and more researchers’attention.Previous work has always focused on multi-agent applications with perfect information.Researchers are usually based on human-designed rules to provide decision-making searching services.However,existing methods for solving perfect-information mobile applications cannot be directly applied to imperfect-information mobile applications.Here,we take the Contact Bridge,a multi-agent application with imperfect information,for the case study.We propose an enhanced searching strategy to deal with multi-agent applications with imperfect information.We design a self-training bidding system model and apply a Recurrent Neural Network(RNN)to model the bidding process.The bridge system model consists of two parts,a bidding prediction system based on imitation learning to get a contract quickly and a visualization system for hands understanding to realize regular communication between players.Then,to dynamically analyze the impact of other players’unknown hands on our final reward,we design a Monte Carlo sampling algorithm based on the bidding system model(BSM)to deal with imperfect information.At the same time,a double-dummy analysis model is designed to efficiently evaluate the results of sampling.Experimental results indicate that our searching strategy outperforms the top rule-based mobile applications. 展开更多
关键词 multi-agent mobile applications imperfect information deep neural network Monte Carlo Contact Bridge
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部