This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c...This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.展开更多
Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the ente...Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates.展开更多
This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength...This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength is studied.Then the shear strength of the entire joint asperities is derived.The results showed that the PSS of the entire joint asperities is proportional to a key parameter hs,which is related to the geometric character of the joint surface and the joint material properties.The parameter hsis taken as the new roughness parameter,and it is reasonable to associate the PSS with the geometric characteristics of the joint surface.Based on the new roughness parameter and shear test results of 20 sets of joint specimens,a new PSS model for rock joints is proposed.The new model is validated with the artificial joints in this paper and real rock joints in published studies.Results showed that it is suitable for different types of rock joints except for gneiss joints.The new model has the form of the Mohr-Coulomb model,which can directly reflect the relationship between the 3 D roughness parameters and the peak dilation angle.展开更多
A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation ...A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation of the maximum possible dilation angle is the degradation of the 3D average equivalent dip angle of the actual contact joint asperities.Firstly,models for calculating the maximum possible dilation angle at the initial and residual shear stress stages are proposed by analyzing the 3D joint morphology characteristics of the corresponding shear stages.Secondly,the variation law of the maximum possible dilation angle is quantified by studying the degradation law of the joint micro convex body.Based on the variation law of the maximum possible dilation angle,the maximum possible shear strength model is proposed.Furthermore,a method to calculate the shear stiffness degradation in the plastic stage is proposed.According to the maximum possible shear strength of rock joints,the shear stress-shear displacement prediction model of rock joints is obtained.The new model reveals that there is a close relationship between joint shear strength and actual contact joint roughness,and the degradation of shear strength after the peak is due to the degradation of actual contact joint roughness.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.42077231 and 51574156).
文摘This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.
基金supported by National Natural Science Foundation of China (51575016)the Beijing Oversea High-Level Talent Project+1 种基金strategic research Grant (KZ20141000500, B-type) of Beijing Natural Science Foundation P.R. Chinathe support by the China Scholarship Council (20160654015) for his research stay at the Institute of Physical and Chemical Research,Wako, Japan
文摘Stretchable electronic sensing devices are defining the path toward wearable electronics. High-performance flexible strain sensors attached on clothing or human skin are required for potential applications in the entertainment,health monitoring, and medical care sectors. In this work,conducting copper electrodes were fabricated onpolydimethylsiloxane as sensitive stretchable microsensors by integrating laser direct writing and transfer printing approaches. The copper electrode was reduced from copper salt using laser writing rather than the general approach of printing with pre-synthesized copper or copper oxide nanoparticles. An electrical resistivity of 96 l X cm was achieved on 40-lm-thick Cu electrodes on flexible substrates. The motion sensing functionality successfully demonstrated a high sensitivity and mechanical robustness.This in situ fabrication method leads to a path toward electronic devices on flexible substrates.
基金supported by China Postdoctoral Science Foundation(No.2020M680007)Beijing Postdoctoral Research Foundation(No.2020-zz-087)+1 种基金National Natural Science Foundation of China(Nos.51478027 and 51174012)Fundamental Research Funds for Beijing Civil Engineering and Architecture(No.X20031)。
文摘This study aims at proposing a reasonable roughness parameter that can reflect the peak shear strength(PSS)of rock joints.Firstly,the contribution of the asperities with different apparent dip angles to shear strength is studied.Then the shear strength of the entire joint asperities is derived.The results showed that the PSS of the entire joint asperities is proportional to a key parameter hs,which is related to the geometric character of the joint surface and the joint material properties.The parameter hsis taken as the new roughness parameter,and it is reasonable to associate the PSS with the geometric characteristics of the joint surface.Based on the new roughness parameter and shear test results of 20 sets of joint specimens,a new PSS model for rock joints is proposed.The new model is validated with the artificial joints in this paper and real rock joints in published studies.Results showed that it is suitable for different types of rock joints except for gneiss joints.The new model has the form of the Mohr-Coulomb model,which can directly reflect the relationship between the 3 D roughness parameters and the peak dilation angle.
基金National Natural Science Foundation of China(Nos.52208328 and 52104090)Innovation Fund Research Project of State Key Laboratory for GeoMechanics and Deep Underground Engineering(No.SKLGDUEK202201)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(No.Z020007).
文摘A consecutive joint shear strength model for soft rock joints is proposed in this paper,which takes into account the degradation law of the actual contact three-dimensional(3D)roughness.The essence of the degradation of the maximum possible dilation angle is the degradation of the 3D average equivalent dip angle of the actual contact joint asperities.Firstly,models for calculating the maximum possible dilation angle at the initial and residual shear stress stages are proposed by analyzing the 3D joint morphology characteristics of the corresponding shear stages.Secondly,the variation law of the maximum possible dilation angle is quantified by studying the degradation law of the joint micro convex body.Based on the variation law of the maximum possible dilation angle,the maximum possible shear strength model is proposed.Furthermore,a method to calculate the shear stiffness degradation in the plastic stage is proposed.According to the maximum possible shear strength of rock joints,the shear stress-shear displacement prediction model of rock joints is obtained.The new model reveals that there is a close relationship between joint shear strength and actual contact joint roughness,and the degradation of shear strength after the peak is due to the degradation of actual contact joint roughness.