The flotation tests and XPS analyses on galena,sphalerite and pyrite have been carried out in a collecting-depressing-reactivating system(hereafter referred as the CDR system).In this system,sulfide minerals were firs...The flotation tests and XPS analyses on galena,sphalerite and pyrite have been carried out in a collecting-depressing-reactivating system(hereafter referred as the CDR system).In this system,sulfide minerals were first collected and activated by the collector,and then depressed strongly by Ca(OH)2 in the strong alkaline solution,and finally reactivated by H2SO4.The flotation tests of pure minerals show that in this system the flotation behaviors of sphalerite and pyrite present irreversible characteristics along with the change of pulp potential.Furthermore,through the CDR system,considerable differences in the flotabilities between galena and sphalerite/pyrite are also observed.The XPS analysis results for galena,sphalerite and pyrite in a CDR system show that in the strong alkaline solution,some of the collectors,that have been already adsorbed on the mineral surface in the collecting process,are desorbed by Ca(OH)2.The XPS analysis results also show that in H2SO4 reactivating process,the surface hydroxides of galena are desorbed again by H2SO4 and replaced by diethyl dithiocarbamate,but those of sphalerite and pyrite are not desorbed.This flotation system may be applied to the bulk-differential flotation process of sulfur-bearing low-grade lead-zinc ores.展开更多
Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute tran...Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.展开更多
To solve the problem of slow leaching speed of copper,surfactant was added into lixivium as leaching agent in the experiment.Based on physical chemistry and seepage flow mechanics,the leaching mechanics of surfactant ...To solve the problem of slow leaching speed of copper,surfactant was added into lixivium as leaching agent in the experiment.Based on physical chemistry and seepage flow mechanics,the leaching mechanics of surfactant was analyzed.The solution surface tension and surfactant adsorbing on the surface of ore have a significant impact on the surface wetting effect.With leaching rate for response,the study screened out three main factors by Plackett-Burman design method:the sulfuric acid concentration,surfactant concentration and temperature.Among these three factors,the surfactant concentration is the most important contributor to leaching rate.After obtaining the experiment center by the steepest ascent experiment,a continuous variable surface model was built by response surface methodology.By solving quadratic polynomial equation,optimal conditions for leaching were finally obtained as follows:the sulfuric acid concentration was 60 g/L,the surfactant concentration was 0.00914 mol/L,and the temperature was 45 °C.The leaching rate was 66.81% in the optimized leaching conditions,which was close to the predicted value,showing that regression result was good.展开更多
To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the dis...To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the distribution of the indicators of indoor air in the gymnasium to check the air-conditioning parameters reasonable or not. And there was a questionnaire for audiences and staff about the acceptance and satisfaction of the thermal comfort,simultaneously,some environmental parameters were monitored. Then an experiment was carried out in gymnasium with the plate sedimentation to the biological aerosol in the air. Finally,the thermal comfort and IAQ in the gymnasium were assessed based on the results of above questionnaire survey and measurements. The results show that most parameters of the environmental are within the standard limits of thermal comfort and IAQ in the monitored period,and the biological contaminants initially come from human beings. The main species in the gymnasium are streptobacillus,coccus,cladosporium,penicillium and neurospora.展开更多
By conducting experimental measurements and numerical simulations of air distribution and microorganism pollutant distribution in the auditorium and game area in a gymnasium,pollutant dispersion control and indoor air...By conducting experimental measurements and numerical simulations of air distribution and microorganism pollutant distribution in the auditorium and game area in a gymnasium,pollutant dispersion control and indoor air quality improvement methods were put forward. The results show that the fungi and bacteria concentration levels are less than the magnitude of 103 CFU (colony-forming units) which meets the requirements of indoor air quality standard. The numerical simulation results quantitatively agree with the experimental data while some differences between theoretical data and experimental data exist in air distributions. People number in gymnasium plays an important role in affecting indoor air quality and the environmental parameters attained the standard.展开更多
Preferential flow is a rapid movement of solution through pores caused by coarse ores. Macropore is the main factor for the preferential flow. Macropore can be defined from three aspects. Segregation of the ores durin...Preferential flow is a rapid movement of solution through pores caused by coarse ores. Macropore is the main factor for the preferential flow. Macropore can be defined from three aspects. Segregation of the ores during dumping was studied according to particle kinematics. Small ores become smaller under the effect of acid and weathering. Clay in the rainwater from the hillside precipitates in the dump. Segregation and fine ores are the main causes in macropore. The permeability in coarse ores is better than that in fine ores. The mechanism in the preferential flows was studied combining the fast conducting effect of the macropore. Experimental result shows that, at certain application rate, fine ore area is saturated while large volume of solution flows laterally to the coarse ore area and leaks out quickly through the macropores. Thus the mechanism of preferential solution flows is further illustrated.展开更多
Two-dimensional images of the granular ore media with different grain sizes were obtained from the X-ray computed tomography.Combined with the digital image processing and finite element techniques,the original graysc...Two-dimensional images of the granular ore media with different grain sizes were obtained from the X-ray computed tomography.Combined with the digital image processing and finite element techniques,the original grayscale images were transformed into the finite element models directly.By using these models,the simulations of pore scale fluid flow among particles were conducted with the COMSOL Multiphysics,and the distribution characteristics of fluid flow velocity and pressure were analyzed.The simulation results show that there exist obvious preferential flow and leaching blind zone in each granular medium.The flow velocity at pore throat is larger than that of pore body and the largest velocity reaches 0.22 m/s.The velocity decreases gradually from the center of pore throat and body to the surface of particles.The flow paths of granular media with larger grain size distribute equally,while the fluid flow velocities in most of areas of granular media with smaller grain size are lower,and some of them approach to zero,so the permeability is very low.There exist some pore clusters with different pressures,which is the basic reason for the uneven flow velocity distribution.展开更多
The phenomenon of preferential solution flow during dump leaching of low-grade ores was studied.The formative mechanism of preferential solution flow was investigated through analyzing the relationship between permeab...The phenomenon of preferential solution flow during dump leaching of low-grade ores was studied.The formative mechanism of preferential solution flow was investigated through analyzing the relationship between permeability and ore diameter,and the relationship between surface tension and ore diameter.The preferential solution flow happened within the fine ore area when the dump was unsaturated.And it could happen within the coarse ore area when the dump became saturated.The results of experiment show that the outflow of coarse ore area increases sharply with higher applied rate.The outflow of fine ore area is greater than that of coarse ore area when the applied rate is below 3.2 L/min,and the preferential solution flow happens in fine ore area.But the preferential solution flow happens in coarse ore area when the applied rate is higher than 3.2 L/min.The result of the experiment is consistent with the mechanism analyzing.展开更多
Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe w...Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.展开更多
基金Project(2008BAE60B00) supported by the National Science & Technology Pillar Program during the Eleventh Five-year Plan Period,China
文摘The flotation tests and XPS analyses on galena,sphalerite and pyrite have been carried out in a collecting-depressing-reactivating system(hereafter referred as the CDR system).In this system,sulfide minerals were first collected and activated by the collector,and then depressed strongly by Ca(OH)2 in the strong alkaline solution,and finally reactivated by H2SO4.The flotation tests of pure minerals show that in this system the flotation behaviors of sphalerite and pyrite present irreversible characteristics along with the change of pulp potential.Furthermore,through the CDR system,considerable differences in the flotabilities between galena and sphalerite/pyrite are also observed.The XPS analysis results for galena,sphalerite and pyrite in a CDR system show that in the strong alkaline solution,some of the collectors,that have been already adsorbed on the mineral surface in the collecting process,are desorbed by Ca(OH)2.The XPS analysis results also show that in H2SO4 reactivating process,the surface hydroxides of galena are desorbed again by H2SO4 and replaced by diethyl dithiocarbamate,but those of sphalerite and pyrite are not desorbed.This flotation system may be applied to the bulk-differential flotation process of sulfur-bearing low-grade lead-zinc ores.
基金Projects(50934002,51104011) supported by the National Natural Science Foundation of ChinaProject(IRT0950) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese UniversityProject(20100480200) supported by China Postdoctoral Science Foundation
文摘Based on the momentum and mass conservation equations, a comprehensive model of heap bioleaching process is developed to investigate the interaction between chemical reactions, solution flow, gas flow, and solute transport within the leaching system. The governing equations are solved numerically using the COMSOL Multiphysics software for the coupled reactive flow and solute transport at micro-scale, meso-scale and macro-scale levels. At or near the surface of ore particle, the acid concentration is relatively higher than that in the central area, while the concentration gradient decreases after 72 d of leaching. The flow simulation between ore particles by combining X-ray CT technology shows that the highest velocity in narrow pore reaches 0.375 m/s. The air velocity within the dump shows that the velocity near the top and side surface is relatively high, which leads to the high oxygen concentration in that area. The coupled heat transfer and liquid flow process shows that the solution can act as an effective remover from the heap, dropping the highest temperature from 60 to 38 ℃. The reagent transfer coupled with solution flow is also analyzed. The results obtained allow us to obtain a better understanding of the fundamental physical phenomenon of the bioleaching process.
基金Projects (51374035,51304011) supported by the National Natural Science Foundation of ChinaProject (2012BAB08B02) supported by the National Key Technology R&D Program for the 12th Five-year Plan of China
文摘To solve the problem of slow leaching speed of copper,surfactant was added into lixivium as leaching agent in the experiment.Based on physical chemistry and seepage flow mechanics,the leaching mechanics of surfactant was analyzed.The solution surface tension and surfactant adsorbing on the surface of ore have a significant impact on the surface wetting effect.With leaching rate for response,the study screened out three main factors by Plackett-Burman design method:the sulfuric acid concentration,surfactant concentration and temperature.Among these three factors,the surfactant concentration is the most important contributor to leaching rate.After obtaining the experiment center by the steepest ascent experiment,a continuous variable surface model was built by response surface methodology.By solving quadratic polynomial equation,optimal conditions for leaching were finally obtained as follows:the sulfuric acid concentration was 60 g/L,the surfactant concentration was 0.00914 mol/L,and the temperature was 45 °C.The leaching rate was 66.81% in the optimized leaching conditions,which was close to the predicted value,showing that regression result was good.
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the distribution of the indicators of indoor air in the gymnasium to check the air-conditioning parameters reasonable or not. And there was a questionnaire for audiences and staff about the acceptance and satisfaction of the thermal comfort,simultaneously,some environmental parameters were monitored. Then an experiment was carried out in gymnasium with the plate sedimentation to the biological aerosol in the air. Finally,the thermal comfort and IAQ in the gymnasium were assessed based on the results of above questionnaire survey and measurements. The results show that most parameters of the environmental are within the standard limits of thermal comfort and IAQ in the monitored period,and the biological contaminants initially come from human beings. The main species in the gymnasium are streptobacillus,coccus,cladosporium,penicillium and neurospora.
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘By conducting experimental measurements and numerical simulations of air distribution and microorganism pollutant distribution in the auditorium and game area in a gymnasium,pollutant dispersion control and indoor air quality improvement methods were put forward. The results show that the fungi and bacteria concentration levels are less than the magnitude of 103 CFU (colony-forming units) which meets the requirements of indoor air quality standard. The numerical simulation results quantitatively agree with the experimental data while some differences between theoretical data and experimental data exist in air distributions. People number in gymnasium plays an important role in affecting indoor air quality and the environmental parameters attained the standard.
基金Project (50321402) supported by China Science Fundfor Distinguished Groupproject (2004CB619200) supported bytheNational Key Fundamental Research and Development Programof China +1 种基金project (50325415) supported by the National Science Fund forDistinguished Young Scholars of China project(50574099)supported by the National Natural Science Foundation of China
文摘Preferential flow is a rapid movement of solution through pores caused by coarse ores. Macropore is the main factor for the preferential flow. Macropore can be defined from three aspects. Segregation of the ores during dumping was studied according to particle kinematics. Small ores become smaller under the effect of acid and weathering. Clay in the rainwater from the hillside precipitates in the dump. Segregation and fine ores are the main causes in macropore. The permeability in coarse ores is better than that in fine ores. The mechanism in the preferential flows was studied combining the fast conducting effect of the macropore. Experimental result shows that, at certain application rate, fine ore area is saturated while large volume of solution flows laterally to the coarse ore area and leaks out quickly through the macropores. Thus the mechanism of preferential solution flows is further illustrated.
基金Projects(50934002,51074013) supported by the National Natural Science Foundation of China
文摘Two-dimensional images of the granular ore media with different grain sizes were obtained from the X-ray computed tomography.Combined with the digital image processing and finite element techniques,the original grayscale images were transformed into the finite element models directly.By using these models,the simulations of pore scale fluid flow among particles were conducted with the COMSOL Multiphysics,and the distribution characteristics of fluid flow velocity and pressure were analyzed.The simulation results show that there exist obvious preferential flow and leaching blind zone in each granular medium.The flow velocity at pore throat is larger than that of pore body and the largest velocity reaches 0.22 m/s.The velocity decreases gradually from the center of pore throat and body to the surface of particles.The flow paths of granular media with larger grain size distribute equally,while the fluid flow velocities in most of areas of granular media with smaller grain size are lower,and some of them approach to zero,so the permeability is very low.There exist some pore clusters with different pressures,which is the basic reason for the uneven flow velocity distribution.
基金Project(50325415)supported by the National Science Fund for Distinguished Young ScholarsProject (50621603) supported by China Science Fund for Distinguished Group+1 种基金Project (2004CB619200) supported by National Key Fundamental Research and Development Program of ChinaProject (50574099) supported by National Natural Science Foundation of China
文摘The phenomenon of preferential solution flow during dump leaching of low-grade ores was studied.The formative mechanism of preferential solution flow was investigated through analyzing the relationship between permeability and ore diameter,and the relationship between surface tension and ore diameter.The preferential solution flow happened within the fine ore area when the dump was unsaturated.And it could happen within the coarse ore area when the dump became saturated.The results of experiment show that the outflow of coarse ore area increases sharply with higher applied rate.The outflow of fine ore area is greater than that of coarse ore area when the applied rate is below 3.2 L/min,and the preferential solution flow happens in fine ore area.But the preferential solution flow happens in coarse ore area when the applied rate is higher than 3.2 L/min.The result of the experiment is consistent with the mechanism analyzing.
基金Project(2006BAJ02A10) supported by the National Key Technologies R & D Program of China
文摘Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.