Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial...Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.展开更多
The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high...The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high-voltage cycling,which is related to the phase transformation and the surface sides reactions caused by the lattice oxygen evolution.Here,the simultaneous construction of a Mg,Ti-based surface integrated layer and bulk doping through Mg,Ti surface treatment could suppress the lattice oxygen evolution of Nirich material at deep charging.More importantly,Mg and Ti are co-doped into the particles surface to form an Mg_(2)TiO_(4) and Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with Mg and Ti vacancies.In the constructed surface integrated layer,the reverse electric field in the Mg_(2)TiO_(4) effectively suppressed the outward migration of the lattice oxygen anions,while Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with high electronic conductivity and good lithium ion conductor could effectively maintained the stability of the reaction interface during highvoltage cycling.Meanwhile,bulk Mg and Ti co-doping can mitigate the migration of Ni ions in the bulk to keep the stability of transition metal–oxygen(M-O)bond at deep charging.As a result,the NCM@MTP cathode shows excellent long cycle stability at high-voltage charging,which keep high capacity retention of 89.3%and 84.3%at 1 C after 200 and 100 cycles under room and elevated temperature of 25 and 55°C,respectively.This work provides new insights for manipulating the surface chemistry of electrode materials to suppress the lattice oxygen evolution at high charging voltage.展开更多
Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consum...Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consumption.Herein,we created a porous iron phosphide and tungsten oxide self-supporting electrocatalyst with oxygen-containing vacancies on foam nickel(Fe_(2)P-WO_(2.92)/NF)through a facile insitu growth,etching and phosphating strategies.The sequence-controllable strategy will not only generate oxygen vacancies and improve the charge transfer between Fe_(2)P and WO_(2.92) components,but also improve the catalyst porosity and expose more active sites.Electrochemical studies illustrate that the Fe_(2)P-WO_(2.92)/NF catalyst presents good OER activity with a low overpotential of 267 mV at 100 mA cm^(-2),a small Tafel slope of 46.3 mV dec^(-1),high electrical conductivity,and reliable stability at high current density(100 mA cm^(-2) for over 60 h in 1.0 M KOH solution).Most significantly,the operating cell voltage of Fe_(2)P-WO_(2.92)/NF‖Pt/C is as low as 1.90 V at 400 mA cm^(-2) in alkaline condition,which is one of the lowest reported in the literature.The electrocatalytic mechanism shows that the oxygen vacancies and the synergy between Fe_(2)P and WO_(2.92) can adjust the electronic structure and provide more reaction sites,thereby synergistically increasing OER activity.This work provides a feasible strategy to fabricate high-efficiency and stable non-noble metal OER electrocatalysts on the engineering interface.展开更多
Surface vacancy defects,as the bridge between theoretical structural study and the design of heterogenous catalysts,have captured much attention.This work develops a metal-organic framework-engaged replacement-pyrolys...Surface vacancy defects,as the bridge between theoretical structural study and the design of heterogenous catalysts,have captured much attention.This work develops a metal-organic framework-engaged replacement-pyrolysis approach to obtain highly dispersed Ru nanoparticles immobilized on the vacancy-rich Ni-NiO@C hollow microsphere(Ru/Ni-NiO@C).Fine annealing at 400°C introduces nickel and oxygen vacancies on Ru/Ni-NiO@C surface,resulting in an improved electrical conductivity and rapid mass-charge transfer efficiency.Ru/Ni-NiO@C with a hollow micro/nanostructure and interconnected meso-porosity favors the maximal exposure of abundant active sites and elevation of hydrogen oxidation reaction(HOR)activity.Experimental results and density functional theory(DFT)calculations reveal that an electronic effect between Ru and Ni-NiO@C,in conjunction with nickel/oxygen vacancies in the NiO species could synergistically optimize hydrogen binding energy(HBE)and hydroxide binding energy(OHBE).The HBE and OHBE optimizations thus created confer Ru/Ni-NiO@C with a mass activity over 7.75 times higher than commercial Pt/C.Our work may provide a constructive route to make a breakthrough in elevating the hydrogen electrocatalytic performance.展开更多
The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous comp...The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous composite(Ru/HfO_(2)-NC)with Ru/HfO2nanoparticles nested in nitrogen-doped porous carbon via a zeolitic imidazole frameworks-assisted(ZIF)co-precipitation and calcination approach.In particular,ZIF guides an in-situ construction of nested configuration and confines the scattered nanoparticles.Strikingly,Ru/HfO_(2)-NC exhibits unusual ORR activity,superb durability,and methanol tolerance in0.1 M KOH solution with high half-wave potential(E1/2)of 0.83 V and follows a near-4e-reaction pathway.Additionally,the ZAB assembled with cathodic Ru/HfO_(2)-NC outputs a power density of 157.3 m W cm^(-2),a specific capacity of 775 mA h g-1Zn,and a prolonged lifespan of 258 h at 5 mA cm^(-2).Meanwhile,the catalyst has demonstrated potential applicability in flexible ZAB.As suggested by experimental results and density functional theory(DFT)analysis,the remarkable property possibly originated from the optimization of the adsorption and desorption of reactive intermediates caused by the reconfiguration of the electronic structure between Ru and HfO_(2).展开更多
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ...Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.展开更多
When the loop-mediated isothermal amplification(LAMP)assay is used for detecting target genes,DNA extraction is unnecessary in many cases.Simple pretreatment(e.g.heating)is enough to obtain rather sensitive responses....When the loop-mediated isothermal amplification(LAMP)assay is used for detecting target genes,DNA extraction is unnecessary in many cases.Simple pretreatment(e.g.heating)is enough to obtain rather sensitive responses.Even test samples without any pretreatment can be used as template.This feature suggests that LAMP is superior to PCR in developing point-of-care test strategies.In this study,using Stx1 gene from E.coli as model,we verified that viable cells,dead cells and extracellular DNA could function as template in the LAMP assay.In the incubation at 63℃,viable bacteria in the LAMP reaction mixture lysed completely within 2 min,providing DNA template for nucleic acid amplification.The Stx1 gene in diluted culture medium,spiked tap water,spiked seawater and real seawater all could be detected,with or without the step of DNA extraction.We found that the complex substances in real sample(e.g.natural seawater)exhibited considerable inhibitory effect on the sensitivity of the LAMP assay.These outcomes are meaningful for building a point-of-care strategy by employing the LAMP assay for environmental monitoring,bio-resource surveys,food safety,etc.in particular those based on environmental DNA.展开更多
Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_...Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries.展开更多
Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR)...Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.展开更多
Understanding and manipulating the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity.Herein,we present a synthesis of NiSe_(2)-Ce_(2)(CO_(3))_(2)O hetero...Understanding and manipulating the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity.Herein,we present a synthesis of NiSe_(2)-Ce_(2)(CO_(3))_(2)O heterostructure and demonstrate the efficacy of interfacial Ce_(2)(CO_(3))2O in promoting the formation of catalytically active centers to improve oxygen evolution activity.In-situ Raman spectroscopy shows that incorporation of Ce_(2)(CO_(3))2O into NiSe_(2) causes a cathodic shift of the Ni^(2+)→Ni~(3+) transition potential.Operando electrochemical impedance spectroscopy reveals that strong electronic coupling at heterogeneous interface accelerates charge transfer process.Furthermore,density functional theory calculations suggest that actual catalytic active species of NiOOH transformed from NiSe_(2),which is coupled with Ce_(2)(CO_(3))_(2)O,can optimize electronic structure and decrease the free energy barriers toward fast oxygen evolution reaction(OER) kinetics.Consequently,the resultant NiSe_(2)-Ce_(2)(CO_(3))_(2)O electrode exhibits remarkable electrocatalytic performance with low overpotentials(268/304 mV@50/100 mA cm^(-2)) and excellent stability(50 mA cm^(-2) for 120 h) in the alkaline electrolyte.This work emphasizes the significance of modulating the dynamic changes in developing efficient electrocatalyst.展开更多
Single crystal Ni-rich cathode materials(SCNCM)are a good supplement in the market of nickel-based materials due to their safety and excellent electrochemical performance.However,the challenges of cation mixing,phase ...Single crystal Ni-rich cathode materials(SCNCM)are a good supplement in the market of nickel-based materials due to their safety and excellent electrochemical performance.However,the challenges of cation mixing,phase change during charge/discharge,and low thermal stability remain unresolved in single crystal particles.To address these issues,SCNCM are rationally modified by incorporating transition metal(TM)oxides,and the influence of metal ions with different valence states on the electrochemical properties of SCNCM is methodically explored through experimental results and theoretical calculations.Enhanced structural stability is demonstrated in SCNCM after the modifications,and the degree of improvement in the matrix materials varies depending on the valence state of doped TM ions.The highest structural stability is found in WO_(3)-modified SCNCM,due to the smaller effective ion radii,higher electro-negativity,stronger W-O bond,and efficient suppression of oxygen vacancy generation.As a result,WO_(3)-modified SCNCM have outstanding cycle performance,with a capacity retention rate of90.2%after 200 cycles.This study provides an insight into the design of advanced SCNCM with enhanced reversibility and cyclability.展开更多
The Nickel-rich layered cathode materials have been considered as promising cathode for lithium-ion batteries(LIBs),which due to it can achieve a high capacity of than 200 mAh g^(-1)under a high cutoff voltage of4.5 V...The Nickel-rich layered cathode materials have been considered as promising cathode for lithium-ion batteries(LIBs),which due to it can achieve a high capacity of than 200 mAh g^(-1)under a high cutoff voltage of4.5 V.However,the nickel-rich layered cathode materials show severely capacity fading at high voltage cycling,induced by the hybrid O anion and cation redox promote O^(α-)(α<2)migration in the crystal lattice under high charge voltage,lead to the instability of the oxygen skeleton and oxygen evolution,promote the phase transition and electrolyte decomposition.Here,Li_(1-x)TMO_(2-y)/Li_(2)SO_(4) hybrid layer is designed by a simple pyrolysis method to enhance the high voltage cycle stability of NCM.In such constructed hybrid layer,the inner spinel structure of Li_(1-x)TMO_(2-y)layer is the electron-rich state,which could form an electron cloud coupling with the NCM with surface oxygen vacancies,while Li_(2)SO_(4) is p-type semiconductors,thus constructing a heterojunction interface of Li_(1-x)TMO_(2-y)//Li_(2)SO_(4) and Li_(1-x)TMO_(2-y)//NCM,thereby generating internal self-built electric fields to inhibit the outward migration of bulk oxygen anions.Moreover,the internal self-built electric fields could not only strengthen the bonding force between the Li_(1-x)TMO_(2-y)/Li_(2)SO_(4) hybrid layer and host NCM material,but also boost the charge transfer.As consequence,the modified NCM materials show excellent electrochemical performance with capacity retention of 97.7%and 90.1%after 200 cycles at 4.3 V and 4.5 V,respectively.This work provides a new idea for the development of high energy density applications of Nickel-rich layered cathode materials.展开更多
Construction of oxygen evolution electrocatalysts with abundant oxygen defects and large specific surface areas can significantly improve the conversion efficiency of overall water splitting.Herein,we adopt a controll...Construction of oxygen evolution electrocatalysts with abundant oxygen defects and large specific surface areas can significantly improve the conversion efficiency of overall water splitting.Herein,we adopt a controlled method to prepare oxygen defect-rich double-layer hierarchical porous Co3O4 arrays on nickel foam(DL-Co3O4/NF)for water splitting.The unique array-like structure,crystallinity,porosity,and chemical states have been carefully investigated through SEM,TEM,XRD,BET,and XPS techniques.The designated DL-Co3O4/NF has oxygen defects of up to 67.7%and a large BET surface area(57.4 m2g-1).Electrochemical studies show that the catalyst only requires an overpotential of 256 mV to reach 20 mA cm-2,as well as a small Tafel slope of 60.8 mV dec-1,which is far better than all control catalysts.Besides,the catalyst also demonstrates excellent overall water splitting performance in a two-electrode system and good long-term stability,far superior to most previously reported catalysts.Electrocatalytic mechanisms indicate that abundant oxygen vacancies provide more active sites and good conductivity.At the same time,the unique porous arrays facilitate electrolyte transport and gas emissions,thereby synergistically improving OER catalytic performance.展开更多
Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability an...Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability and cost for formic acid electrooxidation(FAEO).Using Pt-and Pd-based nanoclusters as electrocatalysts is a particularly promising strategy to solve the above problem,but two attendant problems need to be solved firstly.(Ⅰ) The controllable synthesis of practicable and stable sub-2 nm clusters remains challenging.(Ⅱ) The catalyzing mechanism of sub-2 nm metal clusters for FAEO has not yet completely understood.Herein,different from traditional solution synthesis,by designing a novel supporting material containing electron-rich and electron-deficient functional groups,size-and dispersioncontrollable synthesis of ~1 nm PtPd nanoclusters is realized by an electrochemical process.The electrocatalytic properties and reaction mechanism of the PtPd nanoclusters for the FAEO were studied by different electrochemical techniques,in-situ fourier transform infrared(FTIR) spectra and density functional theory(DFT) calculations.The tiny PtPd nanoclusters have much higher catalytic activity and durability than commercial Pt/C,Pd/C and 3.5 nm PtPd nanoparticles.The present study shows that the metalreactant interaction plays a decisive role in determining the catalytic activity and cluster-support interaction plays a decisive role in enhancing the durability of electrocatalyst.The ratio and arrangement of Pt and Pd atoms on the surface of 1 nm PtPd cluster as well as the overall valence state,d-band center and specific surface area make them exhibit different catalytic performance and reaction mechanism from nanoparticle catalysts.In addition,in situ FTIR and DFT calculations showed that on the surface of PtPd clusters,the generation of CO_(2)through trans-COOH intermediate is the most optimal reaction pathway for the FAEO.展开更多
基金the financial support from the Guangxi Natural Science Foundation(grant no.2021GXNSFDA075012,2023GXNSFGA026002)National Natural Science Foundation of China(52104298,22075073,52362027,52462029)Fundamental Research Funds for the Central Universities(531107051077).
文摘Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs.
基金supported by the National Natural Science Foundation of China(51902108,51762006,51964013)the Special Projects for Central Government to Guide Local Technological Development(GUIKE ZY20198008)+2 种基金the Guangxi InnovationDriven Development Subject(GUIKE AA19182020,GUIKE AA19254004)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20999012,GUIKE AD20297086)the Special Fund for Guangxi Distinguished Expert。
文摘The Nickel-rich layered cathode materials charged to 4.5 V can obtain a specific capacity of more than 200 m Ah g^(-1).However,the nickel-rich layered cathode materials suffer from the severe capacity fade during high-voltage cycling,which is related to the phase transformation and the surface sides reactions caused by the lattice oxygen evolution.Here,the simultaneous construction of a Mg,Ti-based surface integrated layer and bulk doping through Mg,Ti surface treatment could suppress the lattice oxygen evolution of Nirich material at deep charging.More importantly,Mg and Ti are co-doped into the particles surface to form an Mg_(2)TiO_(4) and Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with Mg and Ti vacancies.In the constructed surface integrated layer,the reverse electric field in the Mg_(2)TiO_(4) effectively suppressed the outward migration of the lattice oxygen anions,while Mg_(0.5–x)Ti_(2–y)(PO_(4))_(3) outer layer with high electronic conductivity and good lithium ion conductor could effectively maintained the stability of the reaction interface during highvoltage cycling.Meanwhile,bulk Mg and Ti co-doping can mitigate the migration of Ni ions in the bulk to keep the stability of transition metal–oxygen(M-O)bond at deep charging.As a result,the NCM@MTP cathode shows excellent long cycle stability at high-voltage charging,which keep high capacity retention of 89.3%and 84.3%at 1 C after 200 and 100 cycles under room and elevated temperature of 25 and 55°C,respectively.This work provides new insights for manipulating the surface chemistry of electrode materials to suppress the lattice oxygen evolution at high charging voltage.
基金supported by the National Natural Science Foundation of China(no.21965005)the Natural Science Foundation of Guangxi Province(2018GXNSFAA294077,2021GXNSFAA076001)+1 种基金the Project of High-Level Talents of Guangxi(F-KA18015)Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consumption.Herein,we created a porous iron phosphide and tungsten oxide self-supporting electrocatalyst with oxygen-containing vacancies on foam nickel(Fe_(2)P-WO_(2.92)/NF)through a facile insitu growth,etching and phosphating strategies.The sequence-controllable strategy will not only generate oxygen vacancies and improve the charge transfer between Fe_(2)P and WO_(2.92) components,but also improve the catalyst porosity and expose more active sites.Electrochemical studies illustrate that the Fe_(2)P-WO_(2.92)/NF catalyst presents good OER activity with a low overpotential of 267 mV at 100 mA cm^(-2),a small Tafel slope of 46.3 mV dec^(-1),high electrical conductivity,and reliable stability at high current density(100 mA cm^(-2) for over 60 h in 1.0 M KOH solution).Most significantly,the operating cell voltage of Fe_(2)P-WO_(2.92)/NF‖Pt/C is as low as 1.90 V at 400 mA cm^(-2) in alkaline condition,which is one of the lowest reported in the literature.The electrocatalytic mechanism shows that the oxygen vacancies and the synergy between Fe_(2)P and WO_(2.92) can adjust the electronic structure and provide more reaction sites,thereby synergistically increasing OER activity.This work provides a feasible strategy to fabricate high-efficiency and stable non-noble metal OER electrocatalysts on the engineering interface.
基金supported by the National Natural Science Foundation of China(21965005)the Natural Science Foundation of Guangxi Province(2018GXNSFAA294077,2021GXNSFAA076001)+1 种基金the Project of High-Level Talents of Guangxi(F-KA18015)the Guangxi Technology Base and Talent Subject(GUIKEAD18126001,GUIKE AD20297039)。
文摘Surface vacancy defects,as the bridge between theoretical structural study and the design of heterogenous catalysts,have captured much attention.This work develops a metal-organic framework-engaged replacement-pyrolysis approach to obtain highly dispersed Ru nanoparticles immobilized on the vacancy-rich Ni-NiO@C hollow microsphere(Ru/Ni-NiO@C).Fine annealing at 400°C introduces nickel and oxygen vacancies on Ru/Ni-NiO@C surface,resulting in an improved electrical conductivity and rapid mass-charge transfer efficiency.Ru/Ni-NiO@C with a hollow micro/nanostructure and interconnected meso-porosity favors the maximal exposure of abundant active sites and elevation of hydrogen oxidation reaction(HOR)activity.Experimental results and density functional theory(DFT)calculations reveal that an electronic effect between Ru and Ni-NiO@C,in conjunction with nickel/oxygen vacancies in the NiO species could synergistically optimize hydrogen binding energy(HBE)and hydroxide binding energy(OHBE).The HBE and OHBE optimizations thus created confer Ru/Ni-NiO@C with a mass activity over 7.75 times higher than commercial Pt/C.Our work may provide a constructive route to make a breakthrough in elevating the hydrogen electrocatalytic performance.
基金supported by the National Natural Science Foundation of China(21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)+1 种基金the Project of HighLevel Talents of Guangxi(F-KA18015)Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘The construction of oxide/metal composite catalysts is a competent means of exploiting the electronic interactions between oxide/metal to enhance catalytic activity.In this work,we construct a novel heterogeneous composite(Ru/HfO_(2)-NC)with Ru/HfO2nanoparticles nested in nitrogen-doped porous carbon via a zeolitic imidazole frameworks-assisted(ZIF)co-precipitation and calcination approach.In particular,ZIF guides an in-situ construction of nested configuration and confines the scattered nanoparticles.Strikingly,Ru/HfO_(2)-NC exhibits unusual ORR activity,superb durability,and methanol tolerance in0.1 M KOH solution with high half-wave potential(E1/2)of 0.83 V and follows a near-4e-reaction pathway.Additionally,the ZAB assembled with cathodic Ru/HfO_(2)-NC outputs a power density of 157.3 m W cm^(-2),a specific capacity of 775 mA h g-1Zn,and a prolonged lifespan of 258 h at 5 mA cm^(-2).Meanwhile,the catalyst has demonstrated potential applicability in flexible ZAB.As suggested by experimental results and density functional theory(DFT)analysis,the remarkable property possibly originated from the optimization of the adsorption and desorption of reactive intermediates caused by the reconfiguration of the electronic structure between Ru and HfO_(2).
基金supported by the National Natural Science Foundation of China(52363028,21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
文摘Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts.
文摘When the loop-mediated isothermal amplification(LAMP)assay is used for detecting target genes,DNA extraction is unnecessary in many cases.Simple pretreatment(e.g.heating)is enough to obtain rather sensitive responses.Even test samples without any pretreatment can be used as template.This feature suggests that LAMP is superior to PCR in developing point-of-care test strategies.In this study,using Stx1 gene from E.coli as model,we verified that viable cells,dead cells and extracellular DNA could function as template in the LAMP assay.In the incubation at 63℃,viable bacteria in the LAMP reaction mixture lysed completely within 2 min,providing DNA template for nucleic acid amplification.The Stx1 gene in diluted culture medium,spiked tap water,spiked seawater and real seawater all could be detected,with or without the step of DNA extraction.We found that the complex substances in real sample(e.g.natural seawater)exhibited considerable inhibitory effect on the sensitivity of the LAMP assay.These outcomes are meaningful for building a point-of-care strategy by employing the LAMP assay for environmental monitoring,bio-resource surveys,food safety,etc.in particular those based on environmental DNA.
基金supported by the Special Project for the Central Government to Guide Local Technological Development (GUIKE ZY20198008)the Guangxi Technology Base and talent Subject (GUIKE AD20238012,AD20297086)+5 种基金the Natural Science Foundation of Guangxi Province (2021GXNSFDA075012)the National Natural Science Foundation of China (51902108,52104298,22169004)the National Natural Science Foundation of China (U20A20249)the Regional Innovation and Development Joint Fundthe Guangxi Innovation Driven Development Subject (GUIKE AA19182020,19254004)the Special Fund for Guangxi Distinguished Expert。
文摘Charging P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)to 4.5 V for higher capacity is enticing.However,it leads to severe capacity fading,ascribing to the lattice oxygen evolution and the P2-O2 phase transformation.Here,the Mg Fe_(2)O_(4) coating and Mg,Fe co-doping were constructed simultaneously by Mg,Fe surface treatment to suppress lattice oxygen evolution and P2-O2 phase transformation of P2-Na_(2/3)Ni_(1/3)Mn_(2/3)O_(2)at deep charging.Through ex-situ X-ray diffraction(XRD)tests,we found that the Mg,Fe bulk co-doping could reduce the repulsion between transition metals and Na+/vacancies ordering,thus inhibiting the P2-O2 phase transition and significantly reducing the irreversible volume change of the material.Meanwhile,the internal electric field formed by the dielectric polarization of Mg Fe_(2)O_(4) effectively inhibits the outward migration of oxidized O^(a-)(a<2),thereby suppressing the lattice oxygen evolution at deep charging,confirmed by in situ Raman and ex situ XPS techniques.P2-Na NM@MF-3 shows enhanced high-voltage cycling performance with capacity retentions of 84.8% and 81.3%at 0.1 and 1 C after cycles.This work sheds light on regulating the surface chemistry for Na-layered oxide materials to enhance the high-voltage performance of Na-ion batteries.
基金financially supported by the National Natural Science Foundation of China (52363028)the Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)the Guangxi Technology Base and Talent Subject (GUIKE AD23023004,GUIKE AD20297039)
文摘Precisely tailoring the surface electronic structures of electrocatalysts for optimal hydrogen binding energy and hydroxide binding energy is vital to improve the sluggish kinetics of hydrogen oxidation reac-tion(HOR).Herein,we employ a partial desulfurization strategy to construct a homologous Ru-RuS_(2) heterostructure anchored on hollow mesoporous carbon nanospheres(Ru-RuS_(2)@C).The disparate work functions of the heterostructure contribute to the spontaneous formation of a unique built-in electric field,accelerating charge transfer and boosting conductivity of electrocatalyst.Consequently,Ru-RuS_(2)@C exhibits robust HOR electrocatalytic activity,achieving an exchange current density and mass activity as high as 3.56 mA cm^(-2) and 2.13 mAμg_(Ru)^(-1),respectively.exceeding those of state-of-the-art Pt/C and most contemporary Ru-based HOR electrocatalysts.Surprisingly,Ru-RuS_(2)@C can tolerate 1000 ppm of cO that lacks in Pt/C.Comprehensive analysis reveals that the directional electron transfer across Ru-RuS_(2) heterointerface induces local charge redistribution in interfacial region,which optimizes and balances the adsorption energies of H and OH species,as well as lowers the energy barrier for water formation,thereby promoting theHoR performance.
基金financially National Natural Science Foundation of China (52363028, 21965005)Volkswagen Foundation (Freigeist Fellowship 89592)+2 种基金Natural Science Foundation of Guangxi Province (2021GXNSFAA076001)Guangxi Technology Base and Talent Subject (GUIKE AD23023004, GUIKE AD20297039)Innovation Project of Guangxi Graduate Education (Nos. YCSW2024219, YCBZ2024082)。
文摘Understanding and manipulating the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity.Herein,we present a synthesis of NiSe_(2)-Ce_(2)(CO_(3))_(2)O heterostructure and demonstrate the efficacy of interfacial Ce_(2)(CO_(3))2O in promoting the formation of catalytically active centers to improve oxygen evolution activity.In-situ Raman spectroscopy shows that incorporation of Ce_(2)(CO_(3))2O into NiSe_(2) causes a cathodic shift of the Ni^(2+)→Ni~(3+) transition potential.Operando electrochemical impedance spectroscopy reveals that strong electronic coupling at heterogeneous interface accelerates charge transfer process.Furthermore,density functional theory calculations suggest that actual catalytic active species of NiOOH transformed from NiSe_(2),which is coupled with Ce_(2)(CO_(3))_(2)O,can optimize electronic structure and decrease the free energy barriers toward fast oxygen evolution reaction(OER) kinetics.Consequently,the resultant NiSe_(2)-Ce_(2)(CO_(3))_(2)O electrode exhibits remarkable electrocatalytic performance with low overpotentials(268/304 mV@50/100 mA cm^(-2)) and excellent stability(50 mA cm^(-2) for 120 h) in the alkaline electrolyte.This work emphasizes the significance of modulating the dynamic changes in developing efficient electrocatalyst.
基金financially supported by the National Natural Science Foundation of China,China(52004103,51974137,52274229,22350410378 and 52304328)the China Postdoctoral Science Foundation,China(2020M671361 and 2023M733189)+4 种基金the Natural Science Foundation of Jiangsu Province,China(BK20220534)the Jiangsu Postdoctoral Science Foundation,China(2020Z090)the Senior Talents Fund of Jiangsu University,China(5501220014)the Key Research and Development Project of Ningxia Province,China(2024BEE02001)the Open Project of Key Laboratory of Advanced Battery Materials of Yunnan Province,China(KLABM-2024092403).
文摘Single crystal Ni-rich cathode materials(SCNCM)are a good supplement in the market of nickel-based materials due to their safety and excellent electrochemical performance.However,the challenges of cation mixing,phase change during charge/discharge,and low thermal stability remain unresolved in single crystal particles.To address these issues,SCNCM are rationally modified by incorporating transition metal(TM)oxides,and the influence of metal ions with different valence states on the electrochemical properties of SCNCM is methodically explored through experimental results and theoretical calculations.Enhanced structural stability is demonstrated in SCNCM after the modifications,and the degree of improvement in the matrix materials varies depending on the valence state of doped TM ions.The highest structural stability is found in WO_(3)-modified SCNCM,due to the smaller effective ion radii,higher electro-negativity,stronger W-O bond,and efficient suppression of oxygen vacancy generation.As a result,WO_(3)-modified SCNCM have outstanding cycle performance,with a capacity retention rate of90.2%after 200 cycles.This study provides an insight into the design of advanced SCNCM with enhanced reversibility and cyclability.
基金supported by the National Natural Science Foundation of China(51902108,51762006,51964013)the Special Projects for Central Government to Guide Local Technological Development(GUIKE ZY20198008)+2 种基金the Guangxi InnovationDriven Development Subject(GUIKE AA19182020,GUIKE AA19254004)the Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20999012,GUIKE AD20297086)the Special Fund for Guangxi Distinguished Expert。
文摘The Nickel-rich layered cathode materials have been considered as promising cathode for lithium-ion batteries(LIBs),which due to it can achieve a high capacity of than 200 mAh g^(-1)under a high cutoff voltage of4.5 V.However,the nickel-rich layered cathode materials show severely capacity fading at high voltage cycling,induced by the hybrid O anion and cation redox promote O^(α-)(α<2)migration in the crystal lattice under high charge voltage,lead to the instability of the oxygen skeleton and oxygen evolution,promote the phase transition and electrolyte decomposition.Here,Li_(1-x)TMO_(2-y)/Li_(2)SO_(4) hybrid layer is designed by a simple pyrolysis method to enhance the high voltage cycle stability of NCM.In such constructed hybrid layer,the inner spinel structure of Li_(1-x)TMO_(2-y)layer is the electron-rich state,which could form an electron cloud coupling with the NCM with surface oxygen vacancies,while Li_(2)SO_(4) is p-type semiconductors,thus constructing a heterojunction interface of Li_(1-x)TMO_(2-y)//Li_(2)SO_(4) and Li_(1-x)TMO_(2-y)//NCM,thereby generating internal self-built electric fields to inhibit the outward migration of bulk oxygen anions.Moreover,the internal self-built electric fields could not only strengthen the bonding force between the Li_(1-x)TMO_(2-y)/Li_(2)SO_(4) hybrid layer and host NCM material,but also boost the charge transfer.As consequence,the modified NCM materials show excellent electrochemical performance with capacity retention of 97.7%and 90.1%after 200 cycles at 4.3 V and 4.5 V,respectively.This work provides a new idea for the development of high energy density applications of Nickel-rich layered cathode materials.
基金supported by the National Natural Science Foundation of China (no.21965005)Natural Science Foundation of Guangxi Province (2018GXNSFAA294077, 2018GXNSFAA281220)+1 种基金Project of High-Level Talents of Guangxi (FKA18015, 2018ZD004)Innovation Project of Guangxi Graduate Education (XYCSZ2019056, YCBZ2019031)。
文摘Construction of oxygen evolution electrocatalysts with abundant oxygen defects and large specific surface areas can significantly improve the conversion efficiency of overall water splitting.Herein,we adopt a controlled method to prepare oxygen defect-rich double-layer hierarchical porous Co3O4 arrays on nickel foam(DL-Co3O4/NF)for water splitting.The unique array-like structure,crystallinity,porosity,and chemical states have been carefully investigated through SEM,TEM,XRD,BET,and XPS techniques.The designated DL-Co3O4/NF has oxygen defects of up to 67.7%and a large BET surface area(57.4 m2g-1).Electrochemical studies show that the catalyst only requires an overpotential of 256 mV to reach 20 mA cm-2,as well as a small Tafel slope of 60.8 mV dec-1,which is far better than all control catalysts.Besides,the catalyst also demonstrates excellent overall water splitting performance in a two-electrode system and good long-term stability,far superior to most previously reported catalysts.Electrocatalytic mechanisms indicate that abundant oxygen vacancies provide more active sites and good conductivity.At the same time,the unique porous arrays facilitate electrolyte transport and gas emissions,thereby synergistically improving OER catalytic performance.
基金supported by the National Key Research and Development Plan(2020YFB1506001)the Natural Science Foundation of Guangxi Province(2019GXNSFGA245003)+1 种基金the National Natural Science Foundation of China(Nos.22272036,21575134,21773224)the Guangxi Normal University Research Grant(2022TD)。
文摘Direct formic acid fuel cell(DFAFC) is an important research project in clean energy field.However,commercialization of DFAFC is still largely limited by the available catalysts with unsatisfied activity,durability and cost for formic acid electrooxidation(FAEO).Using Pt-and Pd-based nanoclusters as electrocatalysts is a particularly promising strategy to solve the above problem,but two attendant problems need to be solved firstly.(Ⅰ) The controllable synthesis of practicable and stable sub-2 nm clusters remains challenging.(Ⅱ) The catalyzing mechanism of sub-2 nm metal clusters for FAEO has not yet completely understood.Herein,different from traditional solution synthesis,by designing a novel supporting material containing electron-rich and electron-deficient functional groups,size-and dispersioncontrollable synthesis of ~1 nm PtPd nanoclusters is realized by an electrochemical process.The electrocatalytic properties and reaction mechanism of the PtPd nanoclusters for the FAEO were studied by different electrochemical techniques,in-situ fourier transform infrared(FTIR) spectra and density functional theory(DFT) calculations.The tiny PtPd nanoclusters have much higher catalytic activity and durability than commercial Pt/C,Pd/C and 3.5 nm PtPd nanoparticles.The present study shows that the metalreactant interaction plays a decisive role in determining the catalytic activity and cluster-support interaction plays a decisive role in enhancing the durability of electrocatalyst.The ratio and arrangement of Pt and Pd atoms on the surface of 1 nm PtPd cluster as well as the overall valence state,d-band center and specific surface area make them exhibit different catalytic performance and reaction mechanism from nanoparticle catalysts.In addition,in situ FTIR and DFT calculations showed that on the surface of PtPd clusters,the generation of CO_(2)through trans-COOH intermediate is the most optimal reaction pathway for the FAEO.