In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based ...Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based on driving trajectory of vehicles to predict the destinations,which is challenging to achieve the early destination prediction.To this end,we propose a model of early destination prediction,DP-BPR,to predict the destinations by users’travel time and locations.There are three challenges to accomplish the model:1)the extremely sparse historical data make it challenge to predict destinations directly from raw historical data;2)the destinations are related to not only departure points but also departure time so that both of them should be taken into consideration in prediction;3)how to learn destination preferences from historical data.To deal with these challenges,we map sparse high-dimensional data to a dense low-dimensional space through embedding learning using deep neural networks.We learn the embeddings not only for users but also for locations and time under the supervision of historical data,and then use Bayesian personalized ranking(BPR)to learn to rank destinations.Experimental results on the Zebra dataset show the effectiveness of DP-BPR.展开更多
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金Project(2018YFF0214706)supported by the National Key Research and Development Program of ChinaProject(cstc2020jcyj-msxmX0690)supported by the Natural Science Foundation of Chongqing,China+1 种基金Project(2020CDJ-LHZZ-039)supported by the Fundamental Research Funds for the Central Universities of Chongqing,ChinaProject(cstc2019jscx-fxydX0012)supported by the Key Research Program of Chongqing Technology Innovation and Application Development,China。
文摘Destination prediction has attracted widespread attention because it can help vehicle-aid systems recommend related services in advance to improve user driving experience.However,the relevant research is mainly based on driving trajectory of vehicles to predict the destinations,which is challenging to achieve the early destination prediction.To this end,we propose a model of early destination prediction,DP-BPR,to predict the destinations by users’travel time and locations.There are three challenges to accomplish the model:1)the extremely sparse historical data make it challenge to predict destinations directly from raw historical data;2)the destinations are related to not only departure points but also departure time so that both of them should be taken into consideration in prediction;3)how to learn destination preferences from historical data.To deal with these challenges,we map sparse high-dimensional data to a dense low-dimensional space through embedding learning using deep neural networks.We learn the embeddings not only for users but also for locations and time under the supervision of historical data,and then use Bayesian personalized ranking(BPR)to learn to rank destinations.Experimental results on the Zebra dataset show the effectiveness of DP-BPR.