Resilience of air&space defense system of systems(SoSs)is critical to national air defense security.However,the research on it is still scarce.In this study,the resilience of air&space defense SoSs is firstly ...Resilience of air&space defense system of systems(SoSs)is critical to national air defense security.However,the research on it is still scarce.In this study,the resilience of air&space defense SoSs is firstly defined and the kill network theory is established by combining super network and kill chain theory.Two cases of the SoSs are considered:(a)The kill chains are relatively homogenous;(b)The kill chains are relatively heterogenous.Meanwhile,two capability assessment methods,which are based on the number of kill chains and improved self-information quantity,respectively,are proposed.The improved self-information quantity modeled based on nodes and edges can achieve qualitative and quantitative assessment of the combat capability by using linguistic Pythagorean fuzzy sets.Then,a resilient evaluation index consisting of risk response,survivability,and quick recovery is proposed accordingly.Finally,network models for regional air defense and anti-missile SoSs are established respectively,and the resilience measurement results are verified and analyzed under different attack and recovery strategies,and the optimization strategies are also proposed.The proposed theory and method can meet different demands to evaluate combat capability and optimize resilience of various types of air&space defense and similar SoSs.展开更多
Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small...Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS.展开更多
By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite co...By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.展开更多
The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced ...The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.展开更多
基金supported by National Natural Science Foundation of China,grant numbers 72001214National Social Science Foundation of China,Young Talent Fund of University Association for Science and Technology in Shaanxi,China,No.20190108Natural Science Foundation of Shaanxi Province,grant number 2020JQ-484.
文摘Resilience of air&space defense system of systems(SoSs)is critical to national air defense security.However,the research on it is still scarce.In this study,the resilience of air&space defense SoSs is firstly defined and the kill network theory is established by combining super network and kill chain theory.Two cases of the SoSs are considered:(a)The kill chains are relatively homogenous;(b)The kill chains are relatively heterogenous.Meanwhile,two capability assessment methods,which are based on the number of kill chains and improved self-information quantity,respectively,are proposed.The improved self-information quantity modeled based on nodes and edges can achieve qualitative and quantitative assessment of the combat capability by using linguistic Pythagorean fuzzy sets.Then,a resilient evaluation index consisting of risk response,survivability,and quick recovery is proposed accordingly.Finally,network models for regional air defense and anti-missile SoSs are established respectively,and the resilience measurement results are verified and analyzed under different attack and recovery strategies,and the optimization strategies are also proposed.The proposed theory and method can meet different demands to evaluate combat capability and optimize resilience of various types of air&space defense and similar SoSs.
基金supported by the National Natural Science Foundation of China(61773306).
文摘Visual inertial odometry(VIO)problems have been extensively investigated in recent years.Existing VIO methods usually consider the localization or navigation issues of robots or autonomous vehicles in relatively small areas.This paper considers the problem of vision-aided inertial navigation(VIN)for aircrafts equipped with a strapdown inertial navigation system(SINS)and a downward-viewing camera.This is different from the traditional VIO problems in a larger working area with more precise inertial sensors.The goal is to utilize visual information to aid SINS to improve the navigation performance.In the multistate constraint Kalman filter(MSCKF)framework,we introduce an anchor frame to construct necessary models and derive corresponding Jacobians to implement a VIN filter to directly update the position in the Earth-centered Earth-fixed(ECEF)frame and the velocity and attitude in the local level frame by feature measurements.Due to its filtering-based property,the proposed method is naturally low computational demanding and is suitable for applications with high real-time requirements.Simulation and real-world data experiments demonstrate that the proposed method can considerably improve the navigation performance relative to the SINS.
基金Project(60874114) supported by the National Natural Science Foundation of China
文摘By combing the properties of chaos optimization method and genetic algorithm,an adaptive mutative scale chaos genetic algorithm(AMSCGA) was proposed by using one-dimensional iterative chaotic self-map with infinite collapses within the finite region of [-1,1].Some measures in the optimization algorithm,such as adjusting the searching space of optimized variables continuously by using adaptive mutative scale method and making the most circle time as its control guideline,were taken to ensure its speediness and veracity in seeking the optimization process.The calculation examples about three testing functions reveal that AMSCGA has both high searching speed and high precision.Furthermore,the average truncated generations,the distribution entropy of truncated generations and the ratio of average inertia generations were used to evaluate the optimization efficiency of AMSCGA quantificationally.It is shown that the optimization efficiency of AMSCGA is higher than that of genetic algorithm.
基金supported by the NSFC-Guangdong Joint Foundation Key Project(U0735003)the Overseas Cooperation Foundation(60828006)+1 种基金the Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,the Fundamental Research Funds for the Central Universities(2009ZM0076)the Natural Science Foundation of Guangdong Province(06105413)
文摘The guaranteed cost control for a class of uncertain discrete-time networked control systems with random delays is addressed. The sensor-to-controller (S-C) and contraller-to-actuator (C-A) random network-induced delays are modeled as two Markov chains. The focus is on the design of a two-mode-dependent guar- anteed cost controller, which depends on both the current S-C delay and the most recently available C-A delay. The resulting closed-loop systems are special jump linear systems. Sufficient conditions for existence of guaranteed cost controller and an upper bound of cost function are established based on stochastic Lyapunov-Krasovakii functions and linear matrix inequality (LMI) approach. A simulation example illustrates the effectiveness of the proposed method.