Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active...Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial.展开更多
Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeM...Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.展开更多
基金supported by Research Grant from China Petroleum and Chemical Corp。
文摘Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial.
基金supported by the Natural Science Foundation of Guangdong Province(2024A1515010908,2025A1515011103)Opening Project of Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(2024P11)+2 种基金Postdoctoral Fellowship Program of CPSF(GZC20233104)National Natural Science Foundation of China(22202087)Opening Project of Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing&Finishing(STRZ202418)。
文摘Catalytic oxidation desulfurization(CODS)technology has shown great promise for diesel desulfurization by virtue of its low cost,mild reaction conditions,and superior desulfurization performance.Herein,a series of FeMoO_(x)/LaTiO_(y)-z samples with diverse Fe/Mo ratios were prepared via a facile citric acid-assisted method.The impact of Fe incorporation on the dispersion and surface elemental states of Mo species,as well as oxygen species content of the synthesized FeMoO_(x)/LaTiO_(y)-z catalysts were systematically characterized using TEM,BET,UV-vis DRS,XPS,XANES,and reaction kinetics,and their CODS performances were examined for 4,6-DMDBT removal.Experimental results demonstrated that Fe/Mo ratio significantly affected the Ti−O bond strength,surface dispersion and electronic structure of Mo O_(2)species on FeMoO_(x)/LaTiO_(y)-z catalysts.FeMoO_(x)/LaTiO_(y)-2 catalyst showed outstanding cycling durability and the best CODS performance with almost 100%removal of 4,6-DMDBT from model oil within 75 min due to its proper MoO3 dispersion,optimal redox property,and the most oxygen vacancy concentration.Nevertheless,further enhancing Fe content led to the increased dispersion of Mo species,while the decrease active Mo species as well as the increase of steric effect for 4,6-DMDBT accessing to the catalytic reactive sites considerably increase the apparent activation energy of FeMoO_(x)/LaTiO_(y)-z(z>2)catalysts during the CODS process,thereby seriously suppressing their CODS performances.Moreover,Radical trapping experiments reveal that the·,generated by the activation of O_(2)at the active sites,catalytic oxidized 4,6-DMDBT to the product of 4,6-DMDBTO_(2),thereby enabling both deep desulfurization and recovery of high-value 4,6-DMDBTO_(2).These findings offer an alternative strategy to achieve ultra deep desulfurization as well as separate and recover high economic value sulfone substances from diesel.