Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both ...Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both operation modes.The interior flow-borne noise and structure modal were verified through experiments.The flow-borne noise was calculated by the acoustic boundary element method(ABEM),and the flow-induced structure noise was obtained by the coupled acoustic boundary element method(ABEM)/structure finite element method(SFEM).The results show that in pump mode,the pressure fluctuation in the volute is comparable to that in the outlet pipe,but in turbine mode,the pressure fluctuation in the impeller is comparable to that in the draft tube.The main frequency of interior flow-borne noise lies at blade passing frequency(BPF)and it shifts to the 9th BPF for interior flow-induced structure noise.The peak values at horizontal plane appear at the 5th BPF,and at axial plane,they get the highest sound pressure level(SPL)at the 8th BPF.Comparing with interior noise,the SPL of exterior flow-induced structure noise is incredibly small.At the 5th BPF,the pump body,cover and suspension show higher SPL in both modes.The outer walls of turbine generate relatively larger SPL than those of the pump.展开更多
In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedra...In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.展开更多
In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbul...In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.展开更多
A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω t...A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.展开更多
基金Project (51509111) supported by the National Natural Science Foundation of ChinaProject (2017M611721) supported by the China Postdoctoral Science Foundation+4 种基金Project (BY2016072-01) supported by the Association Innovation Fund of Production,Learning,and Research,ChinaProjects (GY2017001,GY2018025) supported by Zhenjiang Key Research and Development Plan,ChinaProjects (szjj2015-017,szjj2017-094) supported by the Open Research Subject of Key Laboratory of Fluid and Power Machinery,ChinaProject (GK201614) supported by Sichuan Provincial Key Lab of Process Equipment and Control,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Investigations regarding the relation of noise performance for centrifugal pump operating in pump and turbine modes continue to be inadequate.This paper presents a series of comparisons of flow-induced noise for both operation modes.The interior flow-borne noise and structure modal were verified through experiments.The flow-borne noise was calculated by the acoustic boundary element method(ABEM),and the flow-induced structure noise was obtained by the coupled acoustic boundary element method(ABEM)/structure finite element method(SFEM).The results show that in pump mode,the pressure fluctuation in the volute is comparable to that in the outlet pipe,but in turbine mode,the pressure fluctuation in the impeller is comparable to that in the draft tube.The main frequency of interior flow-borne noise lies at blade passing frequency(BPF)and it shifts to the 9th BPF for interior flow-induced structure noise.The peak values at horizontal plane appear at the 5th BPF,and at axial plane,they get the highest sound pressure level(SPL)at the 8th BPF.Comparing with interior noise,the SPL of exterior flow-induced structure noise is incredibly small.At the 5th BPF,the pump body,cover and suspension show higher SPL in both modes.The outer walls of turbine generate relatively larger SPL than those of the pump.
基金Projects(51109095,51179075,51309119)supported by the National Natural Science Foundation of ChinaProject(BE2012131)supported by Science and Technology Support Program of Jiangsu Province,China
文摘In order to evaluate the effects of mesh generation techniques and grid convergence on pump performance in centrifugal pump model, three widely used mesh styles including structured hexahedral, unstructured tetrahedral and hybrid prismatic/tetrahedral meshes were generated for a centrifugal pump model. And quantitative grid convergence was assessed based on a grid convergence index(GCI), which accounts for the degree of grid refinement. The structured, unstructured or hybrid meshes are found to have certain difference for velocity distributions in impeller with the change of grid cell number. And the simulation results have errors to different degrees compared with experimental data. The GCI-value for structured meshes calculated is lower than that for the unstructured and hybrid meshes. Meanwhile, the structured meshes are observed to get more vortexes in impeller passage.Nevertheless, the hybrid meshes are found to have larger low-velocity area at outlet and more secondary vortexes at a specified location than structured meshes and unstructured meshes.
基金Project supported by the Priority Academic Development Program of Jiangsu Higher Education Institutions, ChinaProject(CXZZ12_0680) supported by Postgraduate Innovation Foundation of Jiangsu Province, ChinaProject(12JDG082) supported by the Advanced Talent Foundation of Jiangsu University, China
文摘In order to investigate the effect of sampling frequency and time on pressure fluctuations, the three-dimensional unsteady numerical simulations were conducted in a circulating water pump. Through comparison of turbulence models with hydraulic performance experiment, SST k-co model was confirmed to study the rational determination of sampling frequency and time better. The Fast Fourier Transform (FFT) technology was then adopted to process those fluctuating pressure signals obtained. On these bases, the characteristics of pressure fluctuations acting on the tongue were discussed. It is found that aliasing errors decrease at higher sampling frequency of 17 640 Hz, but not at a lower sampling frequency of 1 764 Hz. Correspondingly, an output frequency range ten-times wider is obtained at 17 640 Hz. Compared with 8R, when the sampling time is shorter, the amplitudes may be overvalued, and the frequencies and amplitudes of low-frequency fluctuations can not be well predicted. The frequencies at the tongue are in good agreement with the values calculated by formula and the frequency compositions less than the blade passing frequency are accurately predicted.
基金Projects(51239005,51009072) supported by the National Natural Science Foundation of ChinaProject(2011BAF14B04) supported by the National Science&Technology Pillar Program of ChinaProject(13JDG084) supported by the Research Foundation for Advanced Talents of Jiansu University,China
文摘A three-dimensional transient numerical simulation was conducted to study the pressure fluctuations in low-specific-speed centrifugal pumps. The characteristics of the inner flow were investigated using the SST k-ω turbulence model. The distributions of pressure fluctuations in the impeller and the volute were recorded, and the pressure fluctuation intensity was analyzed comprehensively, at the design condition, using statistical methods. The results show that the pressure fluctuation intensity increases along the impeller streamline from the leading edge to the trailing edge. In the impeller passage, the intensity near the shroud is much higher than that near the hub at thc inlet. However, the intensity at the middle passage is almost equal to the intensity at the outlet. The pressure fluctuation intensity is the highest at the trailing edge on the pressure side and near the tongue because of the rotor-stator interaction. The distribution of pressure fluctuation intensity is symmetrical in the axial cross sections of the volute channel. However, this intensity decreases with increasing radial distance. Hence, the pressure fluctuation intensity can be reduced by modifying the geometry of the leading edge in the impeller and the tongue in the volute.