To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed....To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.展开更多
An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamic...An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamics appears when flight vehicles are in a transonic state or confronted with unstable airflow.Meanwhile,actuator failures and multisource model uncertainties are introduced.However,the boundaries of these multisource uncertainties are assumed unknown.The target is assumed to execute high maneuver movement which is unknown to the missile.Furthermore,impact angle constraint puts forward higher requirements for the interception accuracy of the integrated guidance and control(IGC)method.The impact angle constraint and the precise interception are established as the object of the IGC method.Then,the boundaries of the lumped disturbances are estimated,and several fuzzy logic systems are introduced to compensate the unknown nonlinearities and uncertainties.Next,a series of adaptive laws are developed so that the undesirable effects arising from unsteady aerodynamics,actuator failures and unknown uncertainties could be suppressed.Consequently,an impact angle constrained fuzzy adaptive fault tolerant IGC method with three loops is constructed and a perfect hit-to-kill interception with specified impact angle can be implemented.Eventually,the numerical simulations are conducted to verify the effectiveness and superiority of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(62003264).
文摘To solve the problem of providing the best initial situation for terminal guidance when multiple missiles intercept multiple targets,a group cooperative midcourse guidance law(GCMGL)considering time-to-go is proposed.Firstly,a threedimensional(3D)guidance model is established and a cooperative trajectory shaping guidance law is given.Secondly,for estimating the unknown target maneuvering acceleration,an adaptive disturbance observer(ADO)is designed,combining finitetime theory with a radial basis function(RBF)neural network,and the convergence of the estimation error is proven using Lyapunov stability theory.Then,to ensure time-to-go cooperation among missiles within the same group and across different groups,the group consensus protocols of virtual collision point mean and the inter-group cooperative consensus protocol are designed respectively.Based on the group consensus protocols,the virtual collision point cooperative guidance law is given,and the finite-time convergence is proved by Lyapunov stability theory.Simultaneously,combined with trajectory shaping guidance law,virtual collision point cooperative guidance law and the intergroup cooperative consensus protocol,the design of GCMGL considering time-to-go is given.Finally,numerical simulation results show the effectiveness and the superiority of the proposed GCMGL.
基金supported by the National Natural Science Foundation of China(62003264).
文摘An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamics appears when flight vehicles are in a transonic state or confronted with unstable airflow.Meanwhile,actuator failures and multisource model uncertainties are introduced.However,the boundaries of these multisource uncertainties are assumed unknown.The target is assumed to execute high maneuver movement which is unknown to the missile.Furthermore,impact angle constraint puts forward higher requirements for the interception accuracy of the integrated guidance and control(IGC)method.The impact angle constraint and the precise interception are established as the object of the IGC method.Then,the boundaries of the lumped disturbances are estimated,and several fuzzy logic systems are introduced to compensate the unknown nonlinearities and uncertainties.Next,a series of adaptive laws are developed so that the undesirable effects arising from unsteady aerodynamics,actuator failures and unknown uncertainties could be suppressed.Consequently,an impact angle constrained fuzzy adaptive fault tolerant IGC method with three loops is constructed and a perfect hit-to-kill interception with specified impact angle can be implemented.Eventually,the numerical simulations are conducted to verify the effectiveness and superiority of the proposed method.