期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Dendritic tip selection during solidification of alloys:Insights from phase-field simulations
1
作者 Qingjie Zhang Hui Xing +1 位作者 Lingjie Wang Wei Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期467-472,共6页
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al... The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed. 展开更多
关键词 phase-field simulations dendritic structure interface energy anisotropy tip shape selection parameter
在线阅读 下载PDF
Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm
2
作者 Jianye Li Hao Wang +8 位作者 Yibing Luo Zijing Zhou He Zhang Huizhi Chen Kai Tao Chuan Liu Lingxing Zeng Fengwei Huo Jin Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期1-22,共22页
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low ... Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks.Most of the current rescue robots lack the ability to interact with environments,leading to low rescue efficiency.The multimodal electronic skin(e-skin)proposed not only reproduces the pressure,temperature,and humidity sensing capabilities of natural skin but also develops sensing functions beyond it—perceiving object proximity and NO2 gas.Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin.Rescue robots integrated with multimodal e-skin and artificial intelligence(AI)algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping,laying the foundation for automated post-earthquake rescue.Besides,the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time,thereby adopting appropriate measures to protect trapped people from the toxic environment.Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities,which,as an interface for interaction with the physical world,dramatically expands intelligent robots’application scenarios. 展开更多
关键词 Stretchable hydrogel sensors Multimodal e-skin Artificial intelligence Post-earthquake rescue Wireless toxic gas alarm
在线阅读 下载PDF
Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
3
作者 Yao-Cen Wang Yah Zhang +2 位作者 Yoshiyuki Kawazoe Jun Shen Chong-De 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期300-304,共5页
The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dy... The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B. 展开更多
关键词 ab initio molecular dynamics Fe-based amorphous alloys nano-crystallization atomic diffusion
在线阅读 下载PDF
Preparation and microwave absorption performance of SiC aerogel via sol-gel and carbonization reduction process
4
作者 Xinli Ye Pengyi Xu +4 位作者 Hao Yu Shan Li Xiaomin Ma Wei Xu Junxiong Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第12期73-82,共10页
SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-ge... SiC aerogel presents several advantageous features like lightweight and high temperature resistance when applied as microwave absorbing material.In this paper,SiC aerogel was prepared eventually followed by the sol-gel and carbonization reduction process.The results showed that the effective electromagnetic microwave absorption capacity of SiC aerogel was highly increased after being pyrolyzed at 1500℃,which presented a minimum reflection loss value of-57.80 dB at 3.10 mm and 9.86 GHz.Besides,the electromagnetic parameters of SiC aerogel with different paraffin ratios were discussed as well as the varying electromagnetic microwave absorption performances.The minimum reflection loss value first rose then fell as the SiC/paraffin ratio increased,which demonstrated the importance of SiC content.This study establishes the theoretical foundation for the subsequent functional application of SiC aerogel. 展开更多
关键词 SiC aerogel Microwave absorbing SiC/Paraffin ratio Functional applications
在线阅读 下载PDF
Synthesis and microwave absorption performance of heat-treated RF/SiO_(2)aerogels
5
作者 Xinli Ye Hao Yu +4 位作者 Kai Zheng Shan Li Xiaomin Ma Bangxiao Mao Junxiong Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期177-186,共10页
The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/Si... The well-designed composite with satisfactory electromagnetic microwave absorption at high temperatures remains a serious challenge.Herein,we fabricated a resorcinol-formaldehyde/silica dioxide composite aerogel(RF/SiO_(2))with a three-dimensional network structure using sol-gel,atmospheric pressure drying technique as well as heat-treated processes to achieve enhanced microwave absorption capabilities in the low frequency range.The pristine RF/SiO_(2)aerogel presented a typical micropores structure with a surface area,porous volume,and density of 146.82 m^(2)/g,62.40%,and 0.28 cm^(3)/g,respectively.Remarkably,the RF/SiO_(2)aerogel showed an effective absorption bandwidth of 3.56 GHz and a minimum reflection loss value of-46.10 d B at 2.25 mm after being heat-treated at 1500°C,while the maximum effective absorption bandwidth was 3.60 GHz at 2.30 mm.The intricate three-dimensional networks possessed remarkable impedance matching,multiple attenuation mechanisms,interfacial polarization,and dielectric loss,which were attributed to the exceptional ability to absorb electromagnetic microwaves.It offered a fresh approach to creating adaptable and effective microwave absorption materials in military defense. 展开更多
关键词 RF/SiO_(2) AEROGEL Heat-treated Microwave absorption
在线阅读 下载PDF
Tailoring the mercaptan ligands for high performance inverted perovskite solar cells with efficiency exceeding 21% 被引量:3
6
作者 Shuangjie Wang Ziwei He +6 位作者 Jiabao Yang Tongtong Li Xingyu Pu Jian Han Qi Cao Bingyu Gao Xuanhua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期169-177,共9页
Interface passivation engineering has been recognized as an effective way to simultaneously contribute to the optoelectronic characteristic and stability of perovskite solar cells(PSCs). Herein, a p-conjugated dual-li... Interface passivation engineering has been recognized as an effective way to simultaneously contribute to the optoelectronic characteristic and stability of perovskite solar cells(PSCs). Herein, a p-conjugated dual-ligand 1,4-phenylmercaptan(PHMT) is explored to rationally tailor the surface of perovskite film.The experimental and theoretical results show that the PHMT presents planar structure and obvious electron delocalization characteristics, which allow it to anchor on the surface of perovskite with a certain orientation, thereby promoting the transport of interface charge. Moreover, the two sulfhydryl groups in PHMT reduce the trap density of the perovskite film by passivating under-coordinated lead ions.Consequently, the PHMT-modified inverted device based on MAPbI_(3)(MA: methylammonium) achieves enhanced efficiency from 18.11%(control) to 21.11%, along with the ambient stability up to 3500 h.After being placed at 85 °C for 500 h or illuminated for 600 h, the modified device remains over 89%or 86% of initial efficiency. This discovery opens a new window for the choice of passivators to improve the performance of PSCs. 展开更多
关键词 Perovskite solar cells Stability Dual-ligand Passivation MERCAPTAN
在线阅读 下载PDF
A self-healing liquid metal anode for lithium-ion batteries 被引量:2
7
作者 Yaqin Qi Chao Shen +3 位作者 Qian Hou Zengying Ren Ting Jin Keyu Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期522-531,I0015,共11页
The gallium-based liquid metal as one of the self-healing materials has gained wide attention, especially in the energy storage system. However, volume expansion with the ‘‘liquid-solid-liquid”transformation proces... The gallium-based liquid metal as one of the self-healing materials has gained wide attention, especially in the energy storage system. However, volume expansion with the ‘‘liquid-solid-liquid”transformation process still leads to un-controlled electrode failure, which stimulates the irreversibility of liquid metal and hinders their self-healing effect as the anode for lithium-ion batteries. Herein, the polypyrrole(PPy) with highly conductive and adhesive features is first introduced to fasten the liquid metal nanoparticles(gallium-tin alloy, EGaSn) in the integrated electrode and applied as the anode for lithium-ion batteries. A tightly PPy wrapped EGaSn nanoparticles structure is formed during the in-situ polymerization synthesis process, which effectively avoids the detachment of solid alloyed products. Based on the features of PPy, polyacrylic acid is added to facilitate strengthening the integrity of the electrode by constructing the hydrogen bond. The ‘‘dual-insurance” design endows the EGaSn to exhibit superior electrochemical kinetics and an astonishing self-healing effect. As a result, the customized anode displays superior cycling stability(499.8 mAh g^(-1) after 500 cycles at 1.0 A g^(-1))and rate capability(350 mAh g^(-1) at 2.0 A g^(-1)).This work enriches the electrode engineering technology of liquid metal nanoparticles and opens up a new way to customize the self-healing anode for lithium-ion batteries. 展开更多
关键词 Liquid metal SELF-HEALING POLYPYRROLE Li-ion battery STABILITY
在线阅读 下载PDF
Cross-linked polyelectrolyte reinforced SnO_(2)electron transport layer for robust flexible perovskite solar cells 被引量:1
8
作者 Zhihao Li Zhi Wan +7 位作者 Chunmei Jia Meng Zhang Meihe Zhang Jiayi Xue Jianghua Shen Can Li Chao Zhang Zhen Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期335-342,I0010,共9页
SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and ad... SnO_(2)electron transport layer(ETL)is a vital component in perovskite solar cells(PSCs),due to its excellent photoelectric properties and facile fabrication process.In this study,we synthesized a water-soluble and adhesive polyelectrolyte with ethanolamine(EA)and poly-acrylic acid(PAA).The linear PAA was crosslinked by EA,forming a 3D network that stabilized the SnO_(2)nanoparticle dispersion.An organic–inorganic hybrid ETL is developed by introducing the cross-linked PAA-EA into SnO_(2)ETL,which prevents nano particle agglomeration and facilitates uniform SnO_(2)film formation with fewer defects.Additionally,the PAA-EA-modified SnO_(2)facilitated a uniform and compact perovskite film,enhancing the interface contact and carrier transport.Consequently,the PAA-EA-modified PSCs exhibited excellent PCE of 24.34%and 22.88%with high reproducibility for areas of 0.045 and 1.00 cm~2,respectively.Notably,owing to structure reinforce effect of PAA-EA in SnO_(2)ETL,flexible device demonstrated an impressive PCE of 23.34%while maintaining 90.1%of the initial PCE after 10,000 bending cycles with a bending radius of 5 mm.This successful approach of polyelectrolyte reinforced hybrid organic–inorganic ETL displays great potential for flexible,large-area PSCs application. 展开更多
关键词 POLYELECTROLYTE CROSS-LINK Tin oxide Electron transfer layer Flexible solar cells
在线阅读 下载PDF
超声空化在船舶与海洋工程中的应用 被引量:1
9
作者 黄潇 牛广贇 +3 位作者 谢元吉 陈效鹏 胡海豹 潘光 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第1期23-38,共16页
Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to so... Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to solve this problem due to its characteristics of no damage to structures and no pollution.Starting from the phenomenon and mechanism of ultrasonic cleaning,this paper introduces the application of ultrasonic cavitation in ship,pipeline and oil cleaning as well as ballast water treatment.By reviewing the existing studies,limitations such as insufficient ultrasonic parameter studies,lack of uniform cleanliness standards,and insufficient cavitation studies are summarized to provide traceable research ideas for improving ultrasonic cavitation technology and to guide the expansion and improvement of its applications. 展开更多
关键词 Ultrasonic cavitation Cavitation mechanism Ultrasonic cleaning Ship and marine engineering Application status
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部