期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep unfolded amplitude-phase error self-calibration network for DOA estimation
1
作者 ZHU Hangui CHEN Xixi +1 位作者 MA Teng WANG Yongliang 《Journal of Systems Engineering and Electronics》 2025年第2期353-361,共9页
To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a de... To tackle the challenges of intractable parameter tun-ing,significant computational expenditure and imprecise model-driven sparse-based direction of arrival(DOA)estimation with array error(AE),this paper proposes a deep unfolded amplitude-phase error self-calibration network.Firstly,a sparse-based DOA model with an array convex error restriction is established,which gets resolved via an alternating iterative minimization(AIM)algo-rithm.The algorithm is then unrolled to a deep network known as AE-AIM Network(AE-AIM-Net),where all parameters are opti-mized through multi-task learning using the constructed com-plete dataset.The results of the simulation and theoretical analy-sis suggest that the proposed unfolded network achieves lower computational costs compared to typical sparse recovery meth-ods.Furthermore,it maintains excellent estimation performance even in the presence of array magnitude-phase errors. 展开更多
关键词 direction of arrival(DOA) sparse recovery alternat-ing iterative minimization(AIM) deep unfolding amplitude-phase error.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部