The design of astonishing combinations of benzoxazine resins with various fillers is nowadays of great interest for high quality products,especially in ballistic armors.The objective of this study is to investigate a ...The design of astonishing combinations of benzoxazine resins with various fillers is nowadays of great interest for high quality products,especially in ballistic armors.The objective of this study is to investigate a new hybrid material prepared as multi-layered composite plate by hand lay-up technique.Different composites were manufactured from Kevlar fabrics reinforced polybenzoxazine,which was filled with silane treated microcrystalline cellulose(MCC Si)at various amounts in the interlayers.The developed materials were tested for their flexural,dynamic mechanical and ballistic performance.The aim was to highlight the effect of adding different amounts of MCC Si on the behavior of the different plates.Compared to the baseline,the dynamic mechanical and bending tests revealed an obvious decrease of the glass transition of 21℃and a notable increase in storage modulus and flexural strength of about 180%and17%,respectively,upon adding 1%MMC Si as filler.Similarly,the ballistic test exhibited an enhancement in kinetic energy absorption for which the composite supplemented with 1%MCC Si had the maximal energy absorption of 166.60 J.These results indicated that the developed panels,with interesting mechanical and ballistic features,are suitable to be employed as raw materials to produce body armor.展开更多
In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazo...In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field.展开更多
文摘The design of astonishing combinations of benzoxazine resins with various fillers is nowadays of great interest for high quality products,especially in ballistic armors.The objective of this study is to investigate a new hybrid material prepared as multi-layered composite plate by hand lay-up technique.Different composites were manufactured from Kevlar fabrics reinforced polybenzoxazine,which was filled with silane treated microcrystalline cellulose(MCC Si)at various amounts in the interlayers.The developed materials were tested for their flexural,dynamic mechanical and ballistic performance.The aim was to highlight the effect of adding different amounts of MCC Si on the behavior of the different plates.Compared to the baseline,the dynamic mechanical and bending tests revealed an obvious decrease of the glass transition of 21℃and a notable increase in storage modulus and flexural strength of about 180%and17%,respectively,upon adding 1%MMC Si as filler.Similarly,the ballistic test exhibited an enhancement in kinetic energy absorption for which the composite supplemented with 1%MCC Si had the maximal energy absorption of 166.60 J.These results indicated that the developed panels,with interesting mechanical and ballistic features,are suitable to be employed as raw materials to produce body armor.
基金financial support and the necessary facilities for this study by the Ecole Militaire polytechnique and the Ludwig-Maximilian University of Munich(LMU)。
文摘In this research,a promising class of insensitive and high-energy dense biopolymers,which contain nitrogen-rich 1H-tetrazol-1-yl acetate and nitrate ester functional groups,was successfully synthesized through tetrazole derivatization and nitration of cellulose and its micro-sized derivative(TNCN and TCMCN).Their molecular structures,physicochemical properties,thermal behaviors,mechanical sensitivities and detonation performances were studied and compared to those of the corresponding nitrocellulose and nitrated micro-sized cellulose(NCN and CMCN).The developed energetic TNCN and TCMCN exhibited insensitive character with excellent features such as density of 1.710 g/cm3and 1.726 g/cm3,nitrogen content of 20.95%and 22.59%,and detonation velocity of 7552 m/s and 7786 m/s,respectively,and thereby demonstrate their potential applications as new generation of energetic biopolymers to substitute the common NCN.Furthermore,thermal results showed that the designed nitrated and chemical modified cellulosic biopolymers displayed good thermal stability with multistep decomposition mechanism.These results enrich future prospects for the design of promising insensitive and high-energy dense cellulose-rich materials and commence a new chapter in this field.