To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
Based on the methodology for petroleum systems and through the anatomy and geochemical study of typical helium-rich gas fields,the geological conditions,genesis mechanisms,and accumulation patterns of helium resources...Based on the methodology for petroleum systems and through the anatomy and geochemical study of typical helium-rich gas fields,the geological conditions,genesis mechanisms,and accumulation patterns of helium resources in natural gas are investigated.Helium differs greatly from other natural gas resources in generation,migration,and accumulation.Helium is generated due to the slow alpha decay of basement U-/Th-rich elements or released from the deep crust and mantle,and then migrates along the composite transport system to natural gas reservoirs,where it accumulates with a suitable carrier gas.Helium migration and transport are controlled by the transport system consisting of lithospheric faults,basement faults,sedimentary layer faults,and effective transport layers.Based on the analysis of the helium-gas-water phase equilibrium in underground fluids and the phase-potential coupling,three occurrence states,i.e.water-soluble phase,gas-soluble phase and free phase,in the process of helium migration and accumulation,and three migration modes of helium,i.e.mass flow,seepage,and diffusion,are proposed.The formation and enrichment of helium-rich gas reservoirs are controlled by three major factors,i.e.high-quality helium source,high-efficiency transport and suitable carrier,and conform to three accumulation mechanisms,i.e.exsolution and convergence,buoyancy-driven,and differential pressure displacement.The helium-rich gas reservoirs discovered follow the distribution rule and accumulation pattern of near helium source,adjacent to fault,low potential area,and high position".To explore and evaluate helium-rich areas,it is necessary to conduct concurrent/parallel exploration of natural gas.The comprehensive evaluation and selection of profitable helium-rich areas with the characteristics of"source-trap connected,low fluid potential and high position,and proper natural gas volume matched with helium’s"should focus on the coupling and matching of the helium"source,migration,and accumulation elements"with the natural gas"source,reservoir and caprock conditions",and favorable carrier gas trap areas in local low fluid potential and high positions.展开更多
Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbo...Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the ind...In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.展开更多
This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the probl...This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.展开更多
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru...A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
Introduction As the world’s largest developing country, China will maintain a rigid growth in energy consumption for a long time to come [1-3]. Natural gas, the cleanest and low-carbon fossil energy source, plays an ...Introduction As the world’s largest developing country, China will maintain a rigid growth in energy consumption for a long time to come [1-3]. Natural gas, the cleanest and low-carbon fossil energy source, plays an essential role in the country’s achieving its strategic goals of “carbon peak and carbon neutrality”(hereinafter referred to as the “dual carbon” goals).展开更多
PetroChina will install a command center on the distribution of refined oil products in 2008 to improve supply efficiency amidst oil shortage. The center with its layout designed by the China Petroleum and Petrochemic...PetroChina will install a command center on the distribution of refined oil products in 2008 to improve supply efficiency amidst oil shortage. The center with its layout designed by the China Petroleum and Petrochemical Engineering Institute has entered feasibility study, and may be put to use in August at the earliest, according to the recent reports from China news media. The oil giant announced in early January the set-up of an oil storage tank in Changde City, the first of its kind in Central China's Hunan Province, which has a capacity of 20,000 cubic meters.展开更多
Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood....Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs.展开更多
Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the ...Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.展开更多
Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to inves...Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.展开更多
Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic...Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.展开更多
A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress ...A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.展开更多
To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a four...To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.展开更多
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金Supported by the CNPC Technology Research Project(2021ZG13)。
文摘Based on the methodology for petroleum systems and through the anatomy and geochemical study of typical helium-rich gas fields,the geological conditions,genesis mechanisms,and accumulation patterns of helium resources in natural gas are investigated.Helium differs greatly from other natural gas resources in generation,migration,and accumulation.Helium is generated due to the slow alpha decay of basement U-/Th-rich elements or released from the deep crust and mantle,and then migrates along the composite transport system to natural gas reservoirs,where it accumulates with a suitable carrier gas.Helium migration and transport are controlled by the transport system consisting of lithospheric faults,basement faults,sedimentary layer faults,and effective transport layers.Based on the analysis of the helium-gas-water phase equilibrium in underground fluids and the phase-potential coupling,three occurrence states,i.e.water-soluble phase,gas-soluble phase and free phase,in the process of helium migration and accumulation,and three migration modes of helium,i.e.mass flow,seepage,and diffusion,are proposed.The formation and enrichment of helium-rich gas reservoirs are controlled by three major factors,i.e.high-quality helium source,high-efficiency transport and suitable carrier,and conform to three accumulation mechanisms,i.e.exsolution and convergence,buoyancy-driven,and differential pressure displacement.The helium-rich gas reservoirs discovered follow the distribution rule and accumulation pattern of near helium source,adjacent to fault,low potential area,and high position".To explore and evaluate helium-rich areas,it is necessary to conduct concurrent/parallel exploration of natural gas.The comprehensive evaluation and selection of profitable helium-rich areas with the characteristics of"source-trap connected,low fluid potential and high position,and proper natural gas volume matched with helium’s"should focus on the coupling and matching of the helium"source,migration,and accumulation elements"with the natural gas"source,reservoir and caprock conditions",and favorable carrier gas trap areas in local low fluid potential and high positions.
基金Supported by the National Natural Science Foundation of China(42072187)PetroChina Science and Technology Special Project(2021ZZ01-05)。
文摘Super oil and gas basins provide the energy foundation for social progress and human development.In the context of climate change and carbon peak and carbon neutrality goals,constructing an integrated energy and carbon neutrality system that balances energy production and carbon reduction becomes crucial for the transformation of such basins.Under the framework of a green and intelligent energy system primarily based on“four news”,new energy,new electricity,new energy storage,and new intelligence,integrating a“super energy system”composed of a huge amount of underground resources of coal,oil,gas and heat highly overlapping with abundant wind and solar energy resources above ground,and a regional intelligent energy consumption system with coordinated development and utilization of fossil energy and new energy,with a carbon neutrality system centered around carbon cycling is essential.This paper aims to select the traditional oil and gas basins as“super energy basins”with the conditions to build world-class energy production and demonstration bases for carbon neutrality.The Ordos Basin has unique regional advantages,including abundant fossil fuel and new energy resources,as well as matching CO_(2)sources and sinks,position it as a carbon neutrality“super energy basin”which explores the path of transformation of traditional oil and gas basins.Under the integrated development concept and mode of“coal+oil+gas+new energy+carbon capture,utilization and storage(CCUS)/carbon capture and storage(CCS)”,the carbon neutrality in super energy basin is basically achieved,which enhance energy supply and contribute to the carbon peak and carbon neutrality goals,establish a modern energy industry and promote regional green and sustainable development.The pioneering construction of the world-class carbon neutrality“super energy system”demonstration basin in China represented by the Ordos Basin will reshape the new concept and new mode of exploration and development of super energy basins,which is of great significance to the global energy revolution under carbon neutrality.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金Supported by the Prospective and Basic Research Project of PetroChina(2021DJ23)。
文摘In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ04,2023ZZ08)。
文摘This paper reviews the basic research means for oilfield development and also the researches and tests of enhanced oil recovery(EOR)methods for mature oilfields and continental shale oil development,analyzes the problems of EOR methods,and proposes the relevant research prospects.The basic research means for oilfield development include in-situ acquisition of formation rock/fluid samples and non-destructive testing.The EOR methods for conventional and shale oil development are classified as improved water flooding(e.g.nano-water flooding),chemical flooding(e.g.low-concentration middle-phase micro-emulsion flooding),gas flooding(e.g.micro/nano bubble flooding),thermal recovery(e.g.air injection thermal-aided miscible flooding),and multi-cluster uniform fracturing/water-free fracturing,which are discussed in this paper for their mechanisms,approaches,and key technique researches and field tests.These methods have been studied with remarkable progress,and some achieved ideal results in field tests.Nonetheless,some problems still exist,such as inadequate research on mechanisms,imperfect matching technologies,and incomplete industrial chains.It is proposed to further strengthen the basic researches and expand the field tests,thereby driving the formation,promotion and application of new technologies.
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
基金Supported by Central Government Guided Local Science and Technology Innovation Fund Program(ZY20B13)。
文摘A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
文摘Introduction As the world’s largest developing country, China will maintain a rigid growth in energy consumption for a long time to come [1-3]. Natural gas, the cleanest and low-carbon fossil energy source, plays an essential role in the country’s achieving its strategic goals of “carbon peak and carbon neutrality”(hereinafter referred to as the “dual carbon” goals).
文摘PetroChina will install a command center on the distribution of refined oil products in 2008 to improve supply efficiency amidst oil shortage. The center with its layout designed by the China Petroleum and Petrochemical Engineering Institute has entered feasibility study, and may be put to use in August at the earliest, according to the recent reports from China news media. The oil giant announced in early January the set-up of an oil storage tank in Changde City, the first of its kind in Central China's Hunan Province, which has a capacity of 20,000 cubic meters.
文摘Reactive transport modeling(RTM)is an emerging method used to address geological issues in diagenesis research.However,the extrapolation of RTM results to practical reservoir prediction is not sufficiently understood.This paper presents a case study of the Eocene Qaidam Basin that combines RTM results with petrological and mineralogical evidence.The results show that the Eocene Xiaganchaigou Formation is characterized by mixed siliciclastic-carbonate-evaporite sedimentation in a semiclosed saline lacustrine environment.Periodic evaporation and salinization processes during the syngeneticpenecontemporaneous stage gave rise to the replacive genesis of dolomites and the cyclic enrichment of dolomite in the middle-upper parts of the meter-scale depositional sequences.The successive change in mineral paragenesis from terrigenous clastics to carbonates to evaporites was reconstructed using RTM simulations.Parametric uncertainty analyses further suggest that the evaporation intensity(brine salinity)and particle size of sediments(reactive surface area)were important rate-determining factors in the dolomitization,as shown by the relatively higher reaction rates under conditions of higher brine salinity and fine-grained sediments.Combining the simulation results with measured mineralogical and reservoir physical property data indicates that the preservation of original intergranular pores and the generation of porosity via replacive dolomitization were the major formation mechanisms of the distinctive lacustrine dolomite reservoirs(widespread submicron intercrystalline micropores)in the Eocene Qaidam Basin.The results confirm that RTM can be effectively used in geological studies,can provide a better general understanding of the dolomitizing fluid-rock interactions,and can shed light on the spatiotemporal evolution of mineralogy and porosity during dolomitization and the formation of lacustrine dolomite reservoirs.
基金Supported by the“Tianshan Talent”Project of Xinjiang(2022TSYCLJ0070)CNPC Technology Project(2023ZZ18)。
文摘Based on the latest results of near-source exploration in the Middle and Lower Jurassic of the Tuha Basin,a new understanding of the source rocks,reservoir conditions,and source-reservoir-cap rock combinations of the Jurassic Shuixigou Group in the Taibei Sag is established using the concept of the whole petroleum system,and the coal-measure whole petroleum system is analyzed thoroughly.The results are obtained in three aspects.First,the coal-measure source rocks of the Badaowan Formation and Xishanyao Formation and the argillaceous source rocks of the Sangonghe Formation in the Shuixigou Group exhibit the characteristics of long-term hydrocarbon generation,multiple hydrocarbon generation peaks,and simultaneous oil and gas generation,providing sufficient oil and gas sources for the whole petroleum system in the Jurassic coal-bearing basin.Second,multi-phase shallow braided river delta–shallow lacustrine deposits contribute multiple types of reservoirs,e.g.sandstone,tight sandstone,shale and coal rock,in slope and depression areas,providing effective storage space for the petroleum reservoir formation in coal-measure strata.Third,three phases of hydrocarbon charging and structural evolution,as well as effective configuration of multiple types of reservoirs,result in the sequential accumulation of conventional-unconventional hydrocarbons.From high structural positions to depression,there are conventional structural and structural-lithological reservoirs far from the source,low-saturation structural-lithological reservoirs near the source,and tight sandstone gas,coal rock gas and shale oil accumulations within the source.Typically,the tight sandstone gas and coal rock gas are the key options for further exploration,and the shale oil and gas in the depression area is worth of more attention.The new understanding of the whole petroleum system in the coal measures could further enrich and improve the geological theory of the whole petroleum system,and provide new ideas for the overall exploration of oil and gas resources in the Tuha Basin.
基金Supported by the Basic Science Research Fund Project of PetroChina Affiliated Institute(2020D-5008-06)。
文摘Taking the Paleogene Shahejie Formation in Nanpu sag of Bohai Bay Basin as an example,this study comprehensively utilizes seismic,mud logging,well logging,physical property analysis and core thin section data to investigate the metamorphic reservoir formed by contact metamorphism after igneous rock intrusion.(1)A geological model of the igneous intrusion contact met amorphic system is proposed,which can be divided into five structural layers vertically:the intrusion,upper metamorphic aureole,lower metamorphic aureole,normal sedimentary layers on the roof and floor.(2)The intrusion is characterized by xenoliths indicating intrusive facies at the top,regular changes in rock texture and mineral crystallization from the center to the edge on a microscopic scale,and low-angle oblique penetrations of the intrusion through sedimentary strata on a macroscopic scale.The metamorphic aureole has characteristics such as sedimentary rocks as the host rock,typical palimpsest textures developed,various low-temperature thermal metamorphic minerals developed,and medium-low grade thermal metamorphic rocks as the lithology.(3)The reservoir in contact metamorphic aureole has two types of reservoir spaces:matrix pores and fractures.The matrix pores are secondary"intergranular pores"distributed around metamorphic minerals after thermal metamorphic transformation in metasandstones.The fractures are mainly structural fractures and intrusive compressive fractures in metamudstones.The reservoirs generally have three spatial distribution characteristics:layered,porphyritic and hydrocarbon impregnation along fracture.(4)The distribution of reservoirs in the metamorphic aureole is mainly controlled by the intensity of thermal baking.Furthermore,the distribution of favorable reservoirs is controlled by the coupling of favorable lithofacies and thermal contact metamorphism,intrusive compression and hydrothermal dissolution.The proposal and application of the geological model of the intrusion contact metamorphic system are expected to promote the discovery of exploration targets of contact metamorphic rock in Nanpu sag,and provide a reference for the study and exploration of deep contact metamorphic rock reservoirs in the Bohai Bay Basin.
基金Supported by the Major Science and Technology Project of CNPC(2023ZZ19-01).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.
基金Supported by the Joint Fund Project of the National Natural Science Foundation of China(U22B2075).
文摘A seepage-geomechanical coupled embedded fracture flow model has been established for multi-field coupled simulation in tight oil reservoirs,revealing the patterns of change in pressure field,seepage field,and stress field after long-term water injection in tight oil reservoirs.Based on this,a technique for enhanced oil recovery(EOR)combining multi-field reconstruction and combination of displacement and imbibition in tight oil reservoirs has been proposed.The study shows that after long-term water flooding for tight oil development,the pressure diffusion range is limited,making it difficult to establish an effective displacement system.The variation in geostress exhibits diversity,with the change in horizontal minimum principal stress being greater than that in horizontal maximum principal stress,and the variation around the injection wells being more significant than that around the production wells.The deflection of geostress direction around injection wells is also large.The technology for EOR through multi-field reconstruction and combination of displacement and imbibition employs water injection wells converted to production and large-scale fracturing techniques to restructure the artificial fracture network system.Through a full lifecycle energy replenishment method of pre-fracturing energy supplementation,energy increase during fracturing,well soaking for energy storage,and combination of displacement and imbibition,it effectively addresses the issue of easy channeling of the injection medium and difficult energy replenishment after large-scale fracturing.By intensifying the imbibition effect through the coordination of multiple wells,it reconstructs the combined system of displacement and imbibition under a complex fracture network,transitioning from avoiding fractures to utilizing them,thereby improving microscopic sweep and oil displacement efficiencies.Field application in Block Yuan 284 of the Huaqing Oilfield in the Ordos Basin has demonstrated that this technology increases the recovery factor by 12 percentage points,enabling large scale and efficient development of tight oil.
基金Supported by the CNPC Science and Technology Projects(2022-N/G-47808,2023-N/G-67014)RIPED International Cooperation Project(19HTY5000008).
文摘To solve the problems in restoring sedimentary facies and predicting reservoirs in loose gas-bearing sediment,based on seismic sedimentologic analysis of the first 9-component S-wave 3D seismic dataset of China,a fourth-order isochronous stratigraphic framework was set up and then sedimentary facies and reservoirs in the Pleistocene Qigequan Formation in Taidong area of Qaidam Basin were studied by seismic geomorphology and seismic lithology.The study method and thought are as following.Firstly,techniques of phase rotation,frequency decomposition and fusion,and stratal slicing were applied to the 9-component S-wave seismic data to restore sedimentary facies of major marker beds based on sedimentary models reflected by satellite images.Then,techniques of seismic attribute extraction,principal component analysis,and random fitting were applied to calculate the reservoir thickness and physical parameters of a key sandbody,and the results are satisfactory and confirmed by blind testing wells.Study results reveal that the dominant sedimentary facies in the Qigequan Formation within the study area are delta front and shallow lake.The RGB fused slices indicate that there are two cycles with three sets of underwater distributary channel systems in one period.Among them,sandstones in the distributary channels of middle-low Qigequan Formation are thick and broad with superior physical properties,which are favorable reservoirs.The reservoir permeability is also affected by diagenesis.Distributary channel sandstone reservoirs extend further to the west of Sebei-1 gas field,which provides a basis to expand exploration to the western peripheral area.