The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(...The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aq...The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.展开更多
Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a larg...Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a large number of field-based studies aimed at understanding the impacts of deforestation on soil properties.However,the lack of comprehensive meta-analyses that utilized these studies has limited our deeper understanding of how different soil properties,including the soil organic carbon(SOC)pool,respond to deforestation.To address this critical knowledge gap,we conducted a meta-analysis of 144 studies to explore the impacts of deforestation on soil chemical,physical,and biological properties,with special emphasis on the long-term changes in SOC,such as concentrations,stocks,and sequestration.The results revealed that deforestation significantly decreased soil organic matter,electrical conductivity,and base saturation by 52%,50%,and 98%,respectively.While deforestation increased soil total nitrogen content and decreased available phosphorus content by 51%and 99%,respectively,it resulted in slight decreases in some chemical properties,including soil pH(1%)and base cations(1%–13%).Deforestation significantly increased bulk density by 27%and soil erosion by 47%,but significantly decreased soil aggregate stability by 39%and saturated hydraulic conductivity by 63%.Soil microbial biomass C and N concentrations and enzyme activities were significantly decreased as a consequence of deforestation.Soil biological properties were much more affected by deforestation than soil physical and chemical properties.Regarding the SOC,the land use conversion from forest to pasture significantly increased SOC concentrations,stocks,and sequestration rates(11%–13%),whereas the land use conversions from forest to both plantation and cropland significantly decreased SOC concentrations,stocks,and sequestration rates(10%–43%).This observed decline in SOC accumulations decreased with increasing years after deforestation.The SOC dynamics following deforestation were predominantly regulated by microbial biomass concentrations,dehydrogenase activity,soil erosion,saturated hydraulic conductivity,aggregate stability,as well as concentrations of total organic carbon,total nitrogen,total phosphorus and organic matter.The present meta-analytical study provides compelling evidence that deforestation can induce profound changes in soil characteristics,including soil C contents,and has significant implications for soil health sustainability and climate change mitigation.展开更多
The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides...The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.展开更多
A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetrae...A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.展开更多
Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advant...Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advantages such as low environmental impact,enhanced safety compared to Li-ion batteries,and cost-effectiveness due to the abundance of zinc.However,early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics.Recent advancements in restructuring the anode,utilizing alternative electrolytes,and developing bifunctional oxygen catalysts have significantly improved ZABs.Scientists have achieved battery reversibility over thousands of cycles,introduced new electrolytes,and achieved energy efficiency records surpassing 70%.Despite these achievements,there are challenges related to lower power density,shorter lifespan,and air electrode corrosion leading to performance degradation.This review paper discusses different battery configurations,and reaction mechanisms for electrically and mechanically rechargeable ZABs,and proposes remedies to enhance overall battery performance.The paper also explores recent advancements,applications,and the future prospects of electrically/mechanically rechargeable ZABs.展开更多
The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.Ho...The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.展开更多
Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS de...Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayedγ-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.展开更多
Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories es...Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.展开更多
Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission sc...Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood,the limiting factor for habitats for saproxylic species in European boreal forests.The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood.We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland.We simulated seven forest management regimes and three climate scenarios(reference,RCP4.5 and RCP8.5)over 100 years.Management regimes included set aside,continuous cover forestry,business-as-usual(BAU)and four modifications of BAU.Habitat suitability was assessed using a speciesspecific habitat suitability index,including 21 fungal and invertebrate species groups.“Winner”and“loser”species were identified based on the modelled impacts of forest management and climate change on their habitat suitability.We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change.Habitat suitability index varied by over 250%among management regimes,while overall change in habitat suitability index caused by climate change was on average only 2%.More species groups were identified as winners than losers from impacts of climate change(52%–95%were winners,depending on the climate change scenario and management regime).The largest increase in habitat suitability index was achieved under set aside(254%)and the climate scenario RCP8.5(>2%),while continuous cover forestry was the most suitable regime to increase habitat suitability of saproxylic species(up to+11%)across all climate change scenarios.Our results show that close-to-nature management regimes(e.g.,continuous cover forestry and set aside)can increase the habitat suitability of many saproxylic boreal species more than the basic business-as-usual regime.This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices,even as climate change progresses.展开更多
Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For inst...Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel.展开更多
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ...This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.展开更多
Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important...Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV-TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when Lévy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections.展开更多
The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates f...The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.展开更多
Effective breeding requires multiplying desired genotypes,keeping them at a convenient location to perform crosses more efficiently,and building orchards to generate material for reforestation.While some of these aims...Effective breeding requires multiplying desired genotypes,keeping them at a convenient location to perform crosses more efficiently,and building orchards to generate material for reforestation.While some of these aims can be achieved by conventional grafting involving only rootstock and scion,topgrafting is known to deliver all in a shorter time span.In this study,Scots pine scions were grafted onto the upper and lower tree crowns in two clonal archives with the aim of inducing early female and male strobili produc-tion,respectively.Their survival rates and strobili production were analyzed with generalized linear mixed models.Sur-vival was low(14%)to moderate(41%),and mainly affected by the topgraft genotype,interstock genotype,crown posi-tion and weather conditions in connection with the grafting procedure.Survival was not affected by the cardinal position in the crown(south or north).Male flowering was ample three years after grafting and reached 56%in the first year among live scions,increasing to 62 and 59%in consecutive years.Female flowering was scarce and was 9%at first,later increasing to 26 and 20%of living scions but was strongly affected by the topgraft genotype.In one subset of scions,female flowering was observed 1 year after grafting.Overall,flowering success was mainly affected by the topgraft and interstock genotypes,and secondary growth of scions.This is one of few reports on topgrafting in functional Scots pine clonal archives.展开更多
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the ca...The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.展开更多
This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the vi...This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.RS-2022–00165798)Anhui Natural Science Foundation(No.2308085MF211)The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant Number(R.G.P.2/491/45).
文摘The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金financially supported by the Strategic Environmental Research and Development Program(Grant No.ER19-1075)。
文摘The insensitive munitions compound nitroguanidine(NQ)is used by the U.S.Army to avoid unintended explosions.However,NQ also represents an emerging contaminant whose environmental emissions can cause toxicity toward aquatic organisms,indicating the need for effective remediation strategies.Thus,we investigated the feasibility of treating water contaminated with NQ in continuous-flow columns packed with zero-valent iron(ZVI)or iron sulfide(FeS).Initially,the impact of pH on NQ transformation by ZVI or FeS was evaluated in batch experiments.The pseudo first-order rate constant for NQ transformation(k_(1,NQ))by ZVI was 8-10 times higher at pH 3.0 compared to pH 5.5 and 7.0,whereas similar k_(1,NQ)values were obtained for FeS at pH 5.5-10.0.Based on these findings,the influent p H fed to the ZVIand Fe S-packed columns was adjusted to 3.0 and 5.5,respectively.Both reactors transformed NQ into nitrosoguanidine(Nso Q).Further transformation of Nso Q by ZVI produced aminoguanidine,guanidine,and cyanamide,whereas Nso Q transformation by Fe S produced guanidine,ammonium,and traces of urea.ZVI outperformed Fe S as a reactive material to remove NQ.The ZVI-packed column effectively removed NQ below detection even after 45 d of operation(490 pore volumes,PV).In contrast,NQ breakthrough(removal efficiency<85%)was observed after 18 d(180 PV)in the Fe S-packed column.The high NQ removal efficiency and long service life of the ZVI-packed column(>490 PV)suggest that the technology is a promising approach for NQ treatment in packed-bed reactors and in situ remediation.
基金This study was financially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020300)the National Natural Science Foundation of China(Grant No.42250410332)+2 种基金the Key Foreign Cooperation Program of the Bureau of International Cooperation of the Chinese Academy of Sciences(Grant No.177GJHZ2022020BS)the‘Double-First Class’Initiative Program for Foreign Talents of Southwest University(Grant No.cstc2021ycjh-bgzxm0002)the‘Prominent Scientist Program’of Chongqing Talents(Grant No.cstc2021ycjh-bgzxm0020)。
文摘Deforestation is one of the most serious environmental problems facing humankind.It continues to escalate rapidly across many regions of the world,thereby deteriorating the forest soil quality.This has prompted a large number of field-based studies aimed at understanding the impacts of deforestation on soil properties.However,the lack of comprehensive meta-analyses that utilized these studies has limited our deeper understanding of how different soil properties,including the soil organic carbon(SOC)pool,respond to deforestation.To address this critical knowledge gap,we conducted a meta-analysis of 144 studies to explore the impacts of deforestation on soil chemical,physical,and biological properties,with special emphasis on the long-term changes in SOC,such as concentrations,stocks,and sequestration.The results revealed that deforestation significantly decreased soil organic matter,electrical conductivity,and base saturation by 52%,50%,and 98%,respectively.While deforestation increased soil total nitrogen content and decreased available phosphorus content by 51%and 99%,respectively,it resulted in slight decreases in some chemical properties,including soil pH(1%)and base cations(1%–13%).Deforestation significantly increased bulk density by 27%and soil erosion by 47%,but significantly decreased soil aggregate stability by 39%and saturated hydraulic conductivity by 63%.Soil microbial biomass C and N concentrations and enzyme activities were significantly decreased as a consequence of deforestation.Soil biological properties were much more affected by deforestation than soil physical and chemical properties.Regarding the SOC,the land use conversion from forest to pasture significantly increased SOC concentrations,stocks,and sequestration rates(11%–13%),whereas the land use conversions from forest to both plantation and cropland significantly decreased SOC concentrations,stocks,and sequestration rates(10%–43%).This observed decline in SOC accumulations decreased with increasing years after deforestation.The SOC dynamics following deforestation were predominantly regulated by microbial biomass concentrations,dehydrogenase activity,soil erosion,saturated hydraulic conductivity,aggregate stability,as well as concentrations of total organic carbon,total nitrogen,total phosphorus and organic matter.The present meta-analytical study provides compelling evidence that deforestation can induce profound changes in soil characteristics,including soil C contents,and has significant implications for soil health sustainability and climate change mitigation.
基金supported by the National Natural Science Foundation of China(Nos.12125509,12222514,11961141003,and 12005304)National Key Research and Development Project(No.2022YFA1602301)+1 种基金CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholars Continuous support for basic scientific research projects。
文摘The Moon provides a unique environment for investigating nearby astrophysical events such as supernovae.Lunar samples retain valuable information from these events,via detectable long-lived“fingerprint”radionuclides such as^(60)Fe.In this work,we stepped up the development of an accelerator mass spectrometry(AMS)method for detecting^(60)Fe using the HI-13tandem accelerator at the China Institute of Atomic Energy(CIAE).Since interferences could not be sufficiently removed solely with the existing magnetic systems of the tandem accelerator and the following Q3D magnetic spectrograph,a Wien filter with a maximum voltage of±60 kV and a maximum magnetic field of 0.3 T was installed after the accelerator magnetic systems to lower the detection background for the low abundance nuclide^(60)Fe.A 1μm thick Si_(3)N_(4) foil was installed in front of the Q3D as an energy degrader.For particle detection,a multi-anode gas ionization chamber was mounted at the center of the focal plane of the spectrograph.Finally,an^(60)Fe sample with an abundance of 1.125×10^(-10)was used to test the new AMS system.These results indicate that^(60)Fe can be clearly distinguished from the isobar^(60)Ni.The sensitivity was assessed to be better than 4.3×10^(-14)based on blank sample measurements lasting 5.8 h,and the sensitivity could,in principle,be expected to be approximately 2.5×10^(-15)when the data were accumulated for 100 h,which is feasible for future lunar sample measurements because the main contaminants were sufficiently separated.
基金the China Scholarship Council(2021)the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-249-03”.
文摘A lightweight flexible thermally stable composite is fabricated by com-bining silica nanofiber membranes(SNM)with MXene@c-MWCNT hybrid film.The flexible SNM with outstanding thermal insulation are prepared from tetraethyl orthosilicate hydrolysis and condensation by electrospinning and high-temperature calcination;the MXene@c-MWCNT_(x:y)films are prepared by vacuum filtration tech-nology.In particular,the SNM and MXene@c-MWCNT_(6:4)as one unit layer(SMC_(1))are bonded together with 5 wt%polyvinyl alcohol(PVA)solution,which exhibits low thermal conductivity(0.066 W m^(-1)K^(-1))and good electromagnetic interference(EMI)shielding performance(average EMI SE_(T),37.8 dB).With the increase in func-tional unit layer,the overall thermal insulation performance of the whole composite film(SMC_(x))remains stable,and EMI shielding performance is greatly improved,especially for SMC_(3)with three unit layers,the average EMI SET is as high as 55.4 dB.In addition,the organic combination of rigid SNM and tough MXene@c-MWCNT_(6:4)makes SMC_(x)exhibit good mechanical tensile strength.Importantly,SMC_(x)exhibit stable EMI shielding and excellent thermal insulation even in extreme heat and cold environment.Therefore,this work provides a novel design idea and important reference value for EMI shielding and thermal insulation components used in extreme environmental protection equipment in the future.
基金S.J.Park acknowledges the support from the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022M3J7A1062940 and 2023R1A2C1004109)K.H.acknowledges the support from the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea.(NRF-2023R1A2C2008017)+1 种基金Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2020R1A6A1A03043435)The authors extend their appreciation to the Researchers Supporting Project(RSP2024R381),King Saud University,Riyadh,Saudi Arabia.
文摘Zinc-air batteries(ZABs)are gaining attention as an ideal option for various applications requiring high-capacity batteries,such as portable electronics,electric vehicles,and renewable energy storage.ZABs offer advantages such as low environmental impact,enhanced safety compared to Li-ion batteries,and cost-effectiveness due to the abundance of zinc.However,early research faced challenges due to parasitic reactions at the zinc anode and slow oxygen redox kinetics.Recent advancements in restructuring the anode,utilizing alternative electrolytes,and developing bifunctional oxygen catalysts have significantly improved ZABs.Scientists have achieved battery reversibility over thousands of cycles,introduced new electrolytes,and achieved energy efficiency records surpassing 70%.Despite these achievements,there are challenges related to lower power density,shorter lifespan,and air electrode corrosion leading to performance degradation.This review paper discusses different battery configurations,and reaction mechanisms for electrically and mechanically rechargeable ZABs,and proposes remedies to enhance overall battery performance.The paper also explores recent advancements,applications,and the future prospects of electrically/mechanically rechargeable ZABs.
基金supported by the National Key Research and Development Project (No. 2022YFA1602301)the National Natural Science Foundation of China (Nos. U2267205, 12275361, 12125509, 12222514, 11961141003, and 12005304)+2 种基金the CAST Young Talent Support Planthe CNNC Science Fund for Talented Young Scholarsthe Continuous-Support Basic Scientific Research Project
文摘The ^(12)C+^(12)C fusion is one of the most important reactions in modern nuclear astrophysics.The trend and magnitude of the reaction rate within the Gamow window strongly influence various astrophysical processes.However,direct measurement of this reaction is extremely difficult,which makes it necessary to develop indirect methods.In this study,the ^(23)Na+p reaction system was used to study the compound nucleus ^(24)Mg.We employed a thick-target inverse kinematics method combined with theγ-charged-particle coincidence technique to measure the proton andα exit channels of ^(24)Mg.Technical details of the ^(23)Na+p thick-target inverse kinematics experiment and analysis are presented herein.
基金supported by the National Key R&D Program of China (Nos. 2022YFA1603300, 2018YFA0404401, 2023YFA1606701, and 2022YFA1602301)National Natural Science Foundation of China (Nos. U1867211, 12275026, and 12222514)the CAS Light of West China Program (No. 2020-82)
文摘Total absorption gamma-ray spectroscopy(TAGS)is a powerful tool for measuring complexγ transitions,which has been effectively applied to the study of reactor decay heat.This paper presents the design of a new TAGS detector,the large-scale modular BGO detection array(LAMBDA),tailored for measuringβ-decay intensity distributions of fission products.The modular design allows the LAMBDA detectors to be assembled in various configurations.The final version of LAMBDA consists of 102 identical 60 mm×60 mm×120 mm BGO crystals and exhibits a high full-energy peak efficiency exceeding 80%at 0.5∼8 MeV based on a Monte Carlo simulation.Currently,approximately half of the LAMBDA modules have been manufactured.Tests usingγ-ray sources and nuclear reactions demonstrated favorable energy resolution,energy linearity,and efficiency uniformity across the modules.Forty-eight modules have been integrated into the prototype LAMBDA-I.The capability of LAMBDA-I inβ-delayedγ-decay experiments was evaluated by commissioning measurements using the ^(152)Eu source.
文摘Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.
基金Open access funding provided by Norwegian University of Life Sciences。
文摘Forest degradation induced by intensive forest management and temperature increase by climate change are resulting in biodiversity decline in boreal forests.Intensive forest management and high-end climate emission scenarios can further reduce the amount and diversity of deadwood,the limiting factor for habitats for saproxylic species in European boreal forests.The magnitude of their combined effects and how changes in forest management can affect deadwood diversity under a range of climate change scenarios are poorly understood.We used forest growth simulations to evaluate how forest management and climate change will individually and jointly affect habitats of red-listed saproxylic species in Finland.We simulated seven forest management regimes and three climate scenarios(reference,RCP4.5 and RCP8.5)over 100 years.Management regimes included set aside,continuous cover forestry,business-as-usual(BAU)and four modifications of BAU.Habitat suitability was assessed using a speciesspecific habitat suitability index,including 21 fungal and invertebrate species groups.“Winner”and“loser”species were identified based on the modelled impacts of forest management and climate change on their habitat suitability.We found that forest management had a major impact on habitat suitability of saproxylic species compared to climate change.Habitat suitability index varied by over 250%among management regimes,while overall change in habitat suitability index caused by climate change was on average only 2%.More species groups were identified as winners than losers from impacts of climate change(52%–95%were winners,depending on the climate change scenario and management regime).The largest increase in habitat suitability index was achieved under set aside(254%)and the climate scenario RCP8.5(>2%),while continuous cover forestry was the most suitable regime to increase habitat suitability of saproxylic species(up to+11%)across all climate change scenarios.Our results show that close-to-nature management regimes(e.g.,continuous cover forestry and set aside)can increase the habitat suitability of many saproxylic boreal species more than the basic business-as-usual regime.This suggests that biodiversity loss of many saproxylic species in boreal forests can be mitigated through improved forest management practices,even as climate change progresses.
基金support by the National Natural Science Foundation of China(NSFC,Grant Nos.12002324,12372341,12172342)。
文摘Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel.
基金The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number(R.G.P.2/123/44).The author MBK would like to thank Prince Sultan University for their support.
文摘This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.
文摘Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV-TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when Lévy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections.
基金the Partnership for Skills in Applied Sciences,Engineering and Technology(PASET)-Regional Scholarship Innovation Fund(RSIF)(World Bank PASET No.IP22-15)supported by the National Research Foundation(NRF)(NRF-2021R1A2C2091787 and NRF-2022M3H4A1A03076280)+1 种基金the Korea Research Institute of Chemical Technology(KRICT)of the Republic of Korea(No.KS2422-10)the National Research Council of Science and Technology(Grant No.Global-23-007)of Republic of Korea。
文摘The interfaces between the inorganic metal oxide and organic photoactive layer are of outmost importance for efficiency and stability in organic solar cells(OSCs).Tin oxide(SnO_(2))is one of the promising candidates for the electron transport layer(ETL)in high-performance inverted OSCs.When a solution-processed SnO_(2)ETL is employed,however,the presence of interfacial defects and suboptimal interfacial contact can lower the power conversion efficiency(PCE)and operational stability of OSCs.Herein,highly efficient and stable inverted OSCs by modification of the SnO_(2)surface with ultraviolet(UV)-curable acrylate oligomers(SAR and OCS)are demonstrated.The highest PCEs of 16.6%and 17.0%are achieved in PM6:Y6-BO OSCs with the SAR and OCS,respectively,outperforming a device with a bare SnO_(2)ETL(PCE 13.8%).The remarkable enhancement of PCEs is attributed to the optimized interfacial contact,leading to mitigated surface defects.More strikingly,improved light-soaking and thermal stability strongly correlated with the interfacial defects are demonstrated for OSCs based on SnO_(2)/UV cross-linked resins compared to OSCs utilizing bare SnO_(2).We believe that UV cross-linking oligomers will play a key role as interfacial modifiers in the future fabrication of large-area and flexible OSCs with high efficiency and stability.
基金supported by Formas (2021–02155)T4F programs,Sweden,and Graduate Research School in Forest Genetics,Biotechnology and Breeding,UPSC,Sweden
文摘Effective breeding requires multiplying desired genotypes,keeping them at a convenient location to perform crosses more efficiently,and building orchards to generate material for reforestation.While some of these aims can be achieved by conventional grafting involving only rootstock and scion,topgrafting is known to deliver all in a shorter time span.In this study,Scots pine scions were grafted onto the upper and lower tree crowns in two clonal archives with the aim of inducing early female and male strobili produc-tion,respectively.Their survival rates and strobili production were analyzed with generalized linear mixed models.Sur-vival was low(14%)to moderate(41%),and mainly affected by the topgraft genotype,interstock genotype,crown posi-tion and weather conditions in connection with the grafting procedure.Survival was not affected by the cardinal position in the crown(south or north).Male flowering was ample three years after grafting and reached 56%in the first year among live scions,increasing to 62 and 59%in consecutive years.Female flowering was scarce and was 9%at first,later increasing to 26 and 20%of living scions but was strongly affected by the topgraft genotype.In one subset of scions,female flowering was observed 1 year after grafting.Overall,flowering success was mainly affected by the topgraft and interstock genotypes,and secondary growth of scions.This is one of few reports on topgrafting in functional Scots pine clonal archives.
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
基金funded by the National Research Council of Thailand (NRCT)the Second Century Foundation (C2F),Chulalongkorn University,ThailandResearcher Supporting Project RSP2024RR400,King Saud University,Saudi Arabia
文摘The selective aqueous-phase glycerol hydrogenolysis is a promising reaction to produce commercially useful 1,3-propanediol(1,3-PDO).The Pt-WOx bifunctional catalyst can catalyse the glycerol hydrogenol-ysis but the catalyst deactivation via sintering,metal leaching,and coking can predominantly occur in the aqueous phase reaction.In this work,the effect of reaction temperature,pressure and second promoter(Cu,Fe,Rh,Mn,Re,Ru,Ir,Sn,B,and P)on catalytic performance and deactivation behaviour of Pt/WOx/-Al2O3 was investigated.When doped with Rh,Mn,Re,Ru,Ir,B,and P,the second promoter boosts catalytic activity by promoting great dispersion of Pt on support and increasing Pt surface area.The increased Bronsted acid sites lead to selective synthesis of 1,3-PDO than 1,2-propanediol(1,2-PDO).The characterization studies of fresh and spent catalysts reveal that the main cause of catalyst deactivation is the Pt sintering,as interpreted based on XRD,CO chemisorption,and TEM analyses.The Pt sintering is affected depending on the second promoter that can either or reduce the interaction between Pt,WO_(χ)/γ and Al_(2)O_(3).As an electron acceptor of Pt in Pt/WO_(χ)/γ-Al_(2)O_(3),Re and Mn as second promoters resulted in increased Pt^(2+) on the catalytic surface,which strengthens the contact between Pt andγ-Al_(2)O_(3) and WO_(χ),resulting in a decrease in Pt sintering.The metal leaching and coking are not affected by the presence of second promoter.The catalyst modified with a second promoter possesses improved catalytic activity and 1,3-PDO production,however the stability continues to remain a challenge.The present work unrav-elled the determining parameters of catalytic activity and deactivation,thus providing a promising pro-tocol toward effective catalysts for glycerol hydrogenolysis.
基金supported by the NSFC(12201557)the Foundation of Zhejiang Provincial Education Department,China(Y202249921).
文摘This work presents an advanced and detailed analysis of the mechanisms of hepatitis B virus(HBV)propagation in an environment characterized by variability and stochas-ticity.Based on some biological features of the virus and the assumptions,the corresponding deterministic model is formulated,which takes into consideration the effect of vaccination.This deterministic model is extended to a stochastic framework by considering a new form of disturbance which makes it possible to simulate strong and significant fluctuations.The long-term behaviors of the virus are predicted by using stochastic differential equations with second-order multiplicative α-stable jumps.By developing the assumptions and employing the novel theoretical tools,the threshold parameter responsible for ergodicity(persistence)and extinction is provided.The theoretical results of the current study are validated by numerical simulations and parameters estimation is also performed.Moreover,we obtain the following new interesting findings:(a)in each class,the average time depends on the value ofα;(b)the second-order noise has an inverse effect on the spread of the virus;(c)the shapes of population densities at stationary level quickly changes at certain values of α.The last three conclusions can provide a solid research base for further investigation in the field of biological and ecological modeling.