Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their c...Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.展开更多
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC...A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.展开更多
基金the National Natural Science Foundation of China (60673054, 60773129)theExcellent Youth Science and Technology Foundation of Anhui Province of China.
文摘Geographic location of nodes is very useful in a sensor network. Previous localization algorithms assume that there exist some anchor nodes in this kind of network, and then other nodes are estimated to create their coordinates. Once there are not anchors to be deployed, those localization algorithms will be invalidated. Many papers in this field focus on anchor-based solutions. The use of anchors introduces many limitations, since anchors require external equipments such as global position system, cause additional power consumption. A novel positioning algorithm is proposed to use a virtual coordinate system based on a new concept--virtual anchor. It is executed in a distributed fashion according to the connectivity of a node and the measured distances to its neighbors. Both the adjacent member information and the ranging distance result are combined to generate the estimated position of a network, one of which is independently adopted for localization previously. At the position refinement stage the intermediate estimation of a node begins to be evaluated on its reliability for position mutation; thus the positioning optimization process of the whole network is avoided falling into a local optimal solution. Simulation results prove that the algorithm can resolve the distributed localization problem for anchor-free sensor networks, and is superior to previous methods in terms of its positioning capability under a variety of circumstances.
基金the Natural Science Foundation of Anhui Province of China (050420212)the Excellent Youth Science and Technology Foundation of Anhui Province of China (04042069).
文摘A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance.