The availability of a periodic inspection system under mixed maintenance policies is studied in this paper.To accommodate the characteristic of multiple failure modes for complex systems,the system failures can be div...The availability of a periodic inspection system under mixed maintenance policies is studied in this paper.To accommodate the characteristic of multiple failure modes for complex systems,the system failures can be divided into two failure modes:hard failure and soft failure.When hard failure occurs,the corresponding corrective maintenance will be performed,taking a random time under the perfect maintenance policy;in contrast,if the soft failure is found,the corresponding preventive maintenance will be performed,taking a random time under the imperfect maintenance policy.The dynamic age setback model is adopted for imperfect maintenance,which can accurately reflect the fault characteristics of the degraded system.Then an analytical model for system steady state availability and instantaneous availability are derived.Moreover,the optimal method to maximize the system steady-state availability through adjusting the inspection interval is researched.According to the above research,the optimization of system unit time cost,preventive maintenance intervals and availability is researched.Finally,the developed approach is demonstrated by a numerical example.展开更多
The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work pr...The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work proposes a strategy dominance mechanism of autonomous collaboration in unmanned swarm within the framework of public goods game. It starts with the requirement analysis of autonomous collaboration in unmanned swarm;and an aspiration-driven multiplayer evolutionary game model is established based on the requirement. Then the average abundance function and strategy dominance condition of the model are constructed by theoretical derivation. Furthermore, the evolutionary mechanism of parameter adjustment in swarm cooperation is revealed via simulation,and the influences of the multiplication factor r, aspiration levelα, threshold m and other parameters on the strategy dominance conditions were simulated for both linear and threshold public goods games(PGGs) to determine the strategy dominance characteristics;Finally, deliberate proposals are suggested to provide a meaningful exploration in the actual control of unmanned swarm cooperation.展开更多
To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establis...To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws.展开更多
In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise p...In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.展开更多
基金supported by the China Postdoctoral Science Foundation(2019M653929)the National Natural Science Foundation of Shandong Province(ZR201910310210)the Green Innovation Science and Technology Plan of Colleges and Universities in Shandong Province(2020KJA014).
文摘The availability of a periodic inspection system under mixed maintenance policies is studied in this paper.To accommodate the characteristic of multiple failure modes for complex systems,the system failures can be divided into two failure modes:hard failure and soft failure.When hard failure occurs,the corresponding corrective maintenance will be performed,taking a random time under the perfect maintenance policy;in contrast,if the soft failure is found,the corresponding preventive maintenance will be performed,taking a random time under the imperfect maintenance policy.The dynamic age setback model is adopted for imperfect maintenance,which can accurately reflect the fault characteristics of the degraded system.Then an analytical model for system steady state availability and instantaneous availability are derived.Moreover,the optimal method to maximize the system steady-state availability through adjusting the inspection interval is researched.According to the above research,the optimization of system unit time cost,preventive maintenance intervals and availability is researched.Finally,the developed approach is demonstrated by a numerical example.
基金supported by the National Natural Science Foundation of China(71901217)the National Key R&D Program of China(2018YFC0806900).
文摘The key advantage of unmanned swarm operation is its autonomous cooperation. How to improve the proportion of cooperators is one of the key issues of autonomous collaboration in unmanned swarm operations. This work proposes a strategy dominance mechanism of autonomous collaboration in unmanned swarm within the framework of public goods game. It starts with the requirement analysis of autonomous collaboration in unmanned swarm;and an aspiration-driven multiplayer evolutionary game model is established based on the requirement. Then the average abundance function and strategy dominance condition of the model are constructed by theoretical derivation. Furthermore, the evolutionary mechanism of parameter adjustment in swarm cooperation is revealed via simulation,and the influences of the multiplication factor r, aspiration levelα, threshold m and other parameters on the strategy dominance conditions were simulated for both linear and threshold public goods games(PGGs) to determine the strategy dominance characteristics;Finally, deliberate proposals are suggested to provide a meaningful exploration in the actual control of unmanned swarm cooperation.
基金supported by the National Natural Science Foundation of China(12002370).
文摘To solve the finite-time error-tracking problem in mis-sile guidance,this paper presents a unified design approach through error dynamics and free-time convergence theory.The proposed approach is initiated by establishing a desired model for free-time convergent error dynamics,characterized by its independence from initial conditions and guidance parameters,and adjustable convergence time.This foundation facilitates the derivation of specific guidance laws that integrate constraints such as leading angle,impact angle,and impact time.The theoretical framework of this study elucidates the nuances and synergies between the proposed guidance laws and existing methodologies.Empirical evaluations through simulation comparisons underscore the enhanced accuracy and adaptability of the proposed laws.
基金supported by Shandong Provincial Natural Science Foundation(ZR2020MF015)Aerospace Technology Group Stability Support Project(ZY0110020009).
文摘In modern war,radar countermeasure is becoming increasingly fierce,and the enemy jamming time and pattern are changing more randomly.It is challenging for the radar to efficiently identify jamming and obtain precise parameter information,particularly in low signal-to-noise ratio(SNR)situations.In this paper,an approach to intelligent recognition and complex jamming parameter estimate based on joint time-frequency distribution features is proposed to address this challenging issue.Firstly,a joint algorithm based on YOLOv5 convolutional neural networks(CNNs)is proposed,which is used to achieve the jamming signal classification and preliminary parameter estimation.Furthermore,an accurate jamming key parameters estimation algorithm is constructed by comprehensively utilizing chi-square statistical test,feature region search,position regression,spectrum interpolation,etc.,which realizes the accurate estimation of jamming carrier frequency,relative delay,Doppler frequency shift,and other parameters.Finally,the approach has improved performance for complex jamming recognition and parameter estimation under low SNR,and the recognition rate can reach 98%under−15 dB SNR,according to simulation and real data verification results.