In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing ...In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing from the traditional matrix encoding strategy,DMES dynamically chose the size of each message group in a given set of adoptable message sizes.The appearance possibilities of all adoptable sizes were set in accordance with the desired embedding performance(embedding rate or bit-change rate).Accordingly,a searching algorithm that could provide an optimal combination of appearance possibilities was proposed.Furthermore,the roulette wheel algorithm was employed to determine the size of each message group according to the optimal combination of appearance possibilities.The effectiveness of DMES was evaluated in StegVoIP,which is a typical covert communication system based on VoIP.The experimental results demonstrate that DMES can adjust embedding capacity and embedding transparency effectively and flexibly,and achieve the desired embedding performance in any case.For the desired embedding rate,the average errors are not more than 0.000 8,and the standard deviations are not more than 0.002 0;for the desired bit-change rate,the average errors are not more than 0.001 4,and the standard deviations are not more than 0.002 6.展开更多
Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on fr...Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on frames is often independent of the inherent speech features, which may lead to great degradation of speech quality. A novel frame-bitrate-change based steganography is proposed in this work, which discovers a novel covert channel for Vo IP and introduces less distortion. This method exploits the feature of multi-rate speech codecs that the practical bitrate of speech frame is identified only by speech decoder at receiving end. Based on this characteristic, two steganography strategies called bitrate downgrading(BD) and bitrate switching(BS)are provided. The first strategy substitutes high bit-rate speech frames with lower ones to embed secret message, which introduces very low distortion in practice, and much less than other bits-modification based methods with the same embedding capacity. The second one encodes secret message bits into different types of speech frames, which is an alternative choice for supplement. The two strategies are implemented and tested on our covert communication system Steg Vo IP. The experiment results show that our proposed method is effective and fulfills the real-time requirement of Vo IP communication.展开更多
The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) la...The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.展开更多
Highly efficient and low-cost halide perovskite solar cells(PSCs)have attracted great attention over the last few years as one of the most promising photovoltaic(PV)technologies.Yet,to gauge the technical feasibility ...Highly efficient and low-cost halide perovskite solar cells(PSCs)have attracted great attention over the last few years as one of the most promising photovoltaic(PV)technologies.Yet,to gauge the technical feasibility for commercialization of PV technologies,the long-term stability of PSCs is still a challenge that must be addressed[1].展开更多
Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since ...Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications. In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief backgroundintroduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials(PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field.展开更多
基金Project(2009AA01A402) supported by the National High-Tech Research and Development Program of ChinaProject(NCET-06-0650) supported by Program for New Century Excellent Talents in University Project(IRT-0725) supported by Program for Changjiang Scholars and Innovative Research Team in Chinese University
文摘In order to optionally regulate embedding capacity and embedding transparency according to user's requirements in voice-over-IP(VoIP) steganography,a dynamic matrix encoding strategy(DMES) was presented.Differing from the traditional matrix encoding strategy,DMES dynamically chose the size of each message group in a given set of adoptable message sizes.The appearance possibilities of all adoptable sizes were set in accordance with the desired embedding performance(embedding rate or bit-change rate).Accordingly,a searching algorithm that could provide an optimal combination of appearance possibilities was proposed.Furthermore,the roulette wheel algorithm was employed to determine the size of each message group according to the optimal combination of appearance possibilities.The effectiveness of DMES was evaluated in StegVoIP,which is a typical covert communication system based on VoIP.The experimental results demonstrate that DMES can adjust embedding capacity and embedding transparency effectively and flexibly,and achieve the desired embedding performance in any case.For the desired embedding rate,the average errors are not more than 0.000 8,and the standard deviations are not more than 0.002 0;for the desired bit-change rate,the average errors are not more than 0.001 4,and the standard deviations are not more than 0.002 6.
基金Project(2011CB302305)supported by National Basic Research Program(973 Program)of ChinaProjects(61232004,61302094)supported by National Natural Science Foundation of China+2 种基金Project(ZQN-PY115)supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,ChinaProject(JA13012)supported by Education Science Research Program for Young and Middle-aged Teacher of Fujian Province of ChinaProject(2014J01238)supported by Natural Science Foundation of Fujian Province of China
文摘Steganography based on bits-modification of speech frames is a kind of commonly used method, which targets at RTP payloads and offers covert communications over voice-over-IP(Vo IP). However, direct modification on frames is often independent of the inherent speech features, which may lead to great degradation of speech quality. A novel frame-bitrate-change based steganography is proposed in this work, which discovers a novel covert channel for Vo IP and introduces less distortion. This method exploits the feature of multi-rate speech codecs that the practical bitrate of speech frame is identified only by speech decoder at receiving end. Based on this characteristic, two steganography strategies called bitrate downgrading(BD) and bitrate switching(BS)are provided. The first strategy substitutes high bit-rate speech frames with lower ones to embed secret message, which introduces very low distortion in practice, and much less than other bits-modification based methods with the same embedding capacity. The second one encodes secret message bits into different types of speech frames, which is an alternative choice for supplement. The two strategies are implemented and tested on our covert communication system Steg Vo IP. The experiment results show that our proposed method is effective and fulfills the real-time requirement of Vo IP communication.
基金This work was partially supported by NSF under Grant 60496315 and national "863" projects under Grant2003AA12331005
文摘The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.
文摘Highly efficient and low-cost halide perovskite solar cells(PSCs)have attracted great attention over the last few years as one of the most promising photovoltaic(PV)technologies.Yet,to gauge the technical feasibility for commercialization of PV technologies,the long-term stability of PSCs is still a challenge that must be addressed[1].
文摘Research on two-dimensional(2D) materials has been explosively increasing in last seventeen years in varying subjects including condensed matter physics, electronic engineering, materials science, and chemistry since the mechanical exfoliation of graphene in 2004. Starting from graphene, 2D materials now have become a big family with numerous members and diverse categories. The unique structural features and physicochemical properties of 2D materials make them one class of the most appealing candidates for a wide range of potential applications. In particular, we have seen some major breakthroughs made in the field of 2D materials in last five years not only in developing novel synthetic methods and exploring new structures/properties but also in identifying innovative applications and pushing forward commercialisation. In this review, we provide a critical summary on the recent progress made in the field of 2D materials with a particular focus on last five years. After a brief backgroundintroduction, we first discuss the major synthetic methods for 2D materials, including the mechanical exfoliation, liquid exfoliation, vapor phase deposition, and wet-chemical synthesis as well as phase engineering of 2D materials belonging to the field of phase engineering of nanomaterials(PEN). We then introduce the superconducting/optical/magnetic properties and chirality of 2D materials along with newly emerging magic angle 2D superlattices. Following that, the promising applications of 2D materials in electronics, optoelectronics, catalysis, energy storage, solar cells, biomedicine, sensors, environments, etc. are described sequentially. Thereafter, we present the theoretic calculations and simulations of 2D materials. Finally, after concluding the current progress, we provide some personal discussions on the existing challenges and future outlooks in this rapidly developing field.