To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement al...To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.展开更多
Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are present...Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are presented based on the system. Firstly, a stepped-frequency signal is employed to achieve high range resolution, combining with a variety of signal processing tech- niques. Secondly, cross-range resolution is gained with a rotating table, and the high-resolution two-dimensional (2-D) imaging of the scale model is obtained by the microwave imaging theory. Finally, two receiving antennas with a small distance in altitude are used, and the three-dimensional (3-D) height distribution of scattering points on the scale model is extracted from the phase of images. Some typical bodies and a scale aircraft model are diagnosed in an anechoic chamber. The experimental results show that, after scaling with a metal sphere, the accurate one- dimensional (l-D) RCS pattern of the model is obtained, and it has a large dynamic range. When the bandwidth of the transmitting signal is 4 GHz, the resolution of the 2-D image can reach to 0.037 5 m. The 3-D height distribution of scattering points is given by interferometric measurement. This paper provides a feasible way to obtain high-precision scattering properties parameters of the scale aircraft model in a conventional rectangular anechoic chamber.展开更多
基金supported by the National Natural Science Foundation of China(61472324)
文摘To overcome the shortcomings of the Lee image enhancement algorithm and its improvement based on the logarithmic image processing(LIP) model, this paper proposes what we believe to be an effective image enhancement algorithm. This algorithm introduces fuzzy entropy, makes full use of neighborhood information, fuzzy information and human visual characteristics.To enhance an image, this paper first carries out the reasonable fuzzy-3 partition of its histogram into the dark region, intermediate region and bright region. It then extracts the statistical characteristics of the three regions and adaptively selects the parameter αaccording to the statistical characteristics of the image’s gray-scale values. It also adds a useful nonlinear transform, thus increasing the ubiquity of the algorithm. Finally, the causes for the gray-scale value overcorrection that occurs in the traditional image enhancement algorithms are analyzed and their solutions are proposed.The simulation results show that our image enhancement algorithm can effectively suppress the noise of an image, enhance its contrast and visual effect, sharpen its edge and adjust its dynamic range.
基金supported by the National Natural Science Foundation of China(6120132061371023)
文摘Aiming at the concept of "diagnosis", a simple and effective broadband radar cross section (RCS) measurement system is constructed, and some multi-dimensional scattering properties diagnosis techniques are presented based on the system. Firstly, a stepped-frequency signal is employed to achieve high range resolution, combining with a variety of signal processing tech- niques. Secondly, cross-range resolution is gained with a rotating table, and the high-resolution two-dimensional (2-D) imaging of the scale model is obtained by the microwave imaging theory. Finally, two receiving antennas with a small distance in altitude are used, and the three-dimensional (3-D) height distribution of scattering points on the scale model is extracted from the phase of images. Some typical bodies and a scale aircraft model are diagnosed in an anechoic chamber. The experimental results show that, after scaling with a metal sphere, the accurate one- dimensional (l-D) RCS pattern of the model is obtained, and it has a large dynamic range. When the bandwidth of the transmitting signal is 4 GHz, the resolution of the 2-D image can reach to 0.037 5 m. The 3-D height distribution of scattering points is given by interferometric measurement. This paper provides a feasible way to obtain high-precision scattering properties parameters of the scale aircraft model in a conventional rectangular anechoic chamber.